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a b s t r a c t 

Malmquist indices are often used to measure productivity changes in dynamic settings and have been 

widely applied. The indices are typically estimated using data envelopment analysis (DEA) estimators. 

Malmquist indices are often decomposed into sub-indices that measure the sources of productivity 

change (e.g., changes in efficiency, technology or other factors). Recently, Kneip et al. (2018) provide new 

theoretical results enabling inference about productivity change for individual firms as well as average 

productivity changed measured in terms of geometric means. This paper extends those results to com- 

ponents of productivity change arising from various decompositions of Malmquist indices. New central 

limit theorems are developed to allow inference about arithmetic means of logarithms of the sub-indices 

as well as geometric means of (untransformed) sub-indices. The results are quite general and extend to 

other sub-indices not explicitly considered in this paper. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Nonparametric Malmquist indices are widely used to assess

changes in productivity across firms in various industries. In

addition, Malmquist indices are often decomposed into various

measures of sources of productivity change, including changes

in efficiency, changes in technology, and other factors. Exam-

ples include Aly, Grabowski, Pasurka, and Rangan (1990) , Färe,

Grosskopf, Lindgren, and Roos (1992, 1994a) , Färe, Grosskopf, and

Norris (1997) , Gilbert and Wilson (1998) , Simar and Wilson (1998) ,

Wheelock and Wilson (1999) , Alam (2001) , Armagan, Ozden, and

Bekcioglu (2010) , Liu (2010) , de Castro Lobo, Ozcan, da Silva, Lins,

and Fiszman (2010) , Andries (2011) , Chang, Hsiao, Huang, and

Chang (2011) , Chowdhury, Wodchis, and Laporte (2011) , Ng (2011) ,

Egilmez and McAvoy (2013) , Ahn and Min (2014) , Bassem (2014) ,

Wu, Cao, and Liu (2014) and Woo, Chung, Chun, Seo, and Hong

(2015) . 1 Estimates of both Malmquist indices and their component

indices are typically reported for individual firms or units, and

often results are summarized by reporting geometric means of

estimated Malmquist indices and their corresponding component
∗ Corresponding author. 

E-mail addresses: leopold.simar@uclouvain.be (L. Simar), pww@clemson.edu (P. 

W. Wilson). 
1 See also Färe, Grosskopf, and Margaritis (2011) for a recent survey on the use 

of Malmquist indices. 
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ndices. Geometric means, as opposed to arithmetic means, are

sed to preserve the multiplicative nature of the indices. 

Most applied papers that estimate productivity change and its

omponent sources make no attempt at inference. The few that

ttempt inference either rely on standard Central Limit Theorem

CLT) results or the bootstrap method proposed by Simar and Wil-

on (1999) . As demonstrated below, however, inferences based on

tandard CLT results is invalid for cases with more than one input

nd one output for reasons similar to those discussed by Kneip,

imar, and Wilson (2015) in the context of mean efficiency in

ross-sectional settings. Moreover, Simar and Wilson (1999) pro-

ide only heuristic arguments to develop their bootstrap method

nd do not provide any theoretical results. Although the simula-

ion evidence provided by Simar and Wilson (1999) suggests that

heir smooth bootstrap method works well, the approach cannot

e justified theoretically in view of the results obtained below. 

Until recently, no theoretical results have been available to per-

it inference about productivity change estimated by Malmquist

ndices. Kneip, Simar, and Wilson (2018) establish the convergence

ate and the existence of a non-degenerate limiting distribution for

ata envelopment analysis (DEA) estimators of Malmquist indices

or individual producers. These results enable use of the subsam-

ling methods of Simar and Wilson (2011) to make inference about

he productivity change from one period to another by an indi-

idual producer. In addition, Kneip et al. (2018) provide new cen-

ral limit theorem (CLT) results for geometric means of Malmquist

ndices as well as arithmetic means of logarithms of Malmquist

https://doi.org/10.1016/j.ejor.2019.02.040
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2019.02.040&domain=pdf
mailto:leopold.simar@uclouvain.be
mailto:pww@clemson.edu
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1  
ndices over samples of producers. 2 This paper extends the results

f Kneip et al. (2018) to component indices obtained by various

ecompositions of Malmquist indices into sources of productivity

hange. Theoretical results developed below provide convergence

ates and existence of non-degenerate limiting distributions for in-

ices measuring change in efficiency, change in technology, etc. for

ndividual producers, enabling use of the subsampling methods

resented by Simar and Wilson (2011) to make inference about

ndividual units. In addition, new CLT results are provided to en-

ble inference about geometric means of the component indices as

ell as arithmetic means of their logarithms. These new CLT re-

ults can be used to make inference about average (geometric or

rithmetic) changes in components of productivity change. In addi-

ion, the new CLT results can be used for hypothesis testing about

ifferences in changes in efficiency, technology or other features

etween groups of firms along the lines of Kneip, Simar, and Wil-

on (2016) . 

The next section develops a nonparametric, statistical model

f production in a dynamic context. Various decompositions of

almquist indices are considered. The Malmquist index and its

omponent indices are defined in terms of hyperbolic distances (as

pposed to distances in the input or output directions) in order to

nsure that the component indices are well-defined. In Section 3 ,

yperbolic DEA estimators and their asymptotic properties are dis-

ussed. Near the end of Section 3 , new results for these estima-

ors needed for components of Malmquist indices are developed.

esults for making inference about components of productivity

hange are presented in Section 4 . In Section 4.1 , results for in-

erence about change in technology are developed. These results

re then extended to other components of productivity change in

ection 4.2 . An empirical illustration using data from Färe et al.

1992) , is presented in Section 5 , and conclusions are discussed in

ection 6 . Additional technical details, as well as proofs of the the-

rems presented in Sections 3 and 4 appear in Appendix A . 

. A dynamic, nonparametric production process 

In order to establish notation, let x ∈ R 

p 
+ and y ∈ R 

q 
+ be vectors

f fixed input and output quantities. Throughout, vectors are as-

umed to be column-vectors, as opposed to row-vectors. At time t ,

he set of feasible combinations of inputs and outputs is given by

t := { (x, y ) | x can produce y at time t } . (2.1) 

he technology , or efficient frontier of � t , is given by 

t∂ := 

{
(x, y ) | (x, y ) ∈ �t , (γ x, γ −1 y ) �∈ �t ∀ γ ∈ (0 , 1) 

}
. 

(2.2) 

Various economic assumptions regarding � t can be made; the

ssumptions of Shephard (1970) and Färe (1988) are typical in mi-

roeconomic theory of the firm and are used here. 

ssumption 2.1. � t is closed and strictly convex. 

ssumption 2.2. (x, y ) �∈ �t if x = 0 , y ≥0, y � = 0; i.e., all production

equires use of some inputs. 

ssumption 2.3. For ̃  x ≥ x, ̃  y ≤ y, if ( x , y ) ∈ � t then ( ̃  x , y ) ∈ �t and

(x, ̃  y ) ∈ �t ; i.e., both inputs and outputs are strongly disposable. 

Here and throughout, inequalities involving vectors are

efined on an element-by-element basis, as is standard.
2 The results obtained by Kneip et al. (2018) make clear that standard CLT results 

uch as the Lindeberg–Feller CLT cannot be used to make inference about means of 

ogs of Malmquist indices. 

d  

o  

L  

c  

p  
ssumption 2.2 rules out free lunches, while Assumption 2.3 im-

oses weak monotonicity on the frontier. 

The Farrell (1957) output efficiency measure at time t gives the

easible proportionate expansion of output quantities and is de-

ned by 

(x, y | �t ) := sup 
{
λ | (x, λy ) ∈ �t 

}
. (2.3)

his gives a radial measure of efficiency since all output quantities

re scaled by the same factor λ. The Farrell (1957) input efficiency

easure at time t is given by 

(x, y | �t ) := inf 
{
θ | (θx, y ) ∈ �t 

}
(2.4)

nd measures efficiency in terms of the amount by which input

evels can be scaled downward by the same factor without reduc-

ng output levels. Clearly, λ( x , y | � t ) ≥1 and θ ( x , y | � t ) ≤1 for all

 x , y ) ∈ � t . 

An alternative measure of efficiency is the hyperbolic graph

easure of efficiency at time t introduced by Färe, Grosskopf, and

ovell (1985) , i.e., 

(x, y | �t ) := inf 
{
γ > 0 | (γ x, γ −1 y ) ∈ �t 

}
. (2.5)

y construction, γ ( x , y | � t ) ≤1 for ( x , y ) ∈ � t . Just as the measures

( x , y | � t ) and λ( x , y | � t ) provide measures of the technical effi-

iency of a firm operating at a point ( x , y ) ∈ � t , so does γ ( x , y | � t ),

ut along a hyperbolic path to the frontier of � t . The measure in

2.5) gives the amount by which input levels can be feasibly, pro-

ortionately scaled downward while simultaneously scaling output

evels upward by the same proportion. 

Next, define the operator C(·) so that 
(�t ) : = { (x, y ) | x = a ̃  x , 

y = a ̃  y for some ( ̃  x , ̃  y ) ∈ �t and any a ∈ R 
1 
+ } (2.6) 

s the convex cone of the set � t . Note that this is a pointed cone

i.e., C(�t ) includes {(0, 0)}). Analogous to (2.2) , the frontier of this

et is given by 

 
∂ (�t ) : = { (x, y ) | (x, y ) ∈ C(�t ) , 

(γ x, γ −1 y ) / ∈ C(�t ) ∀ γ ∈ (0 , 1) } . (2.7) 

f C(�t ) = �t , then the frontier � t ∂ at time t exhibits globally

onstant returns to scale (CRS), although this is ruled out by strict

onvexity of � t in Assumption 2.1 . Otherwise, �t ⊂ C(�t ) and � t ∂ 

s said to exhibit variable returns to scale (VRS), with returns to

cale either increasing, constant, or decreasing depending on the

articular region of the frontier. 

Now consider a sample X n = { (X 1 
i 
, Y 1 

i 
) , (X 2 

i 
, Y 2 

i 
) } n 

i =1 
of input-

utput combinations for n firms observed in periods t = 1 and 2.

o simplify notation, define Z t 
i 
:= (X t 

i 
, Y t 

i 
) for t ∈ {1, 2}. Then the

ample X n is represented by X n = { Z 1 
i 
, Z 2 

i 
} n 
i =1 

. Firm i ’s change in

roductivity between periods 1 and 2 is measured by the hyper-

olic Malmquist index 

 i := 

( 

γ
(
Z 2 
i 
| C(�1 ) 

)
γ
(
Z 1 
i 
| C(�1 ) 

) ×
γ
(
Z 2 
i 
| C(�2 ) 

)
γ
(
Z 1 
i 
| C(�2 ) 

)) 1 / 2 

. (2.8) 

his is the geometric mean of two ratios, each providing a mea-

ure of productivity change, in the first case using the boundary of

(�1 ) as a benchmark, and in the second case using the boundary

f C(�2 ) as a benchmark. For firm i , M i > (= or < ) 1 if produc-

ivity increases (remains unchanged or decreases) between periods

 and 2. As in Kneip et al. (2018) , the Malmquist index here is

efined in terms of hyperbolic measures as opposed to input- or

utput-oriented measures to avoid numerical difficulties. Zofio and

ovell (2001) , Johnson and McGinnis (2009) and Russell (2018) dis-

uss the advantages of defining Malmquist indices in terms of hy-

erbolic distances. In particular, use of hyperbolic measures helps
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ensure that all of the components of productivity change defined

below are well-defined. 

Various decompositions of Malmquist indices have been pro-

posed in attempts to identify the sources of any changes in pro-

ductivity. Färe et al. (1992) propose the input-oriented analog of 

M i = 

[
γ (Z 2 

i 
| C(�2 )) 

γ (Z 1 
i 
| C(�1 )) 

]
︸ ︷︷ ︸ 

:= E 1 (Z 1 i ,Z 2 i | �1 , �2 ) 

×
[
γ (Z 2 

i 
| C(�1 )) 

γ (Z 2 
i 
| C(�2 )) 

× γ (Z 1 
i 
| C(�1 )) 

γ (Z 1 
i 
| C(�2 )) 

]1 / 2 

︸ ︷︷ ︸ 
:= T 1 (Z 1 i ,Z 2 i | �1 , �2 ) 

. (2.9)

The authors remark (p. 90) that “the quotient outside the bracket

measures the change in technical inefficiency and the ratios inside

the bracket measure the shift in the frontier between periods” 1

and 2. However, this is true if and only if the technology is one of

globally constant returns to scale. Recognizing this, Färe, Grosskopf,

Norris, and Zhang (1994b) decompose the output-oriented analog

of E 1 (Z 1 i , Z 
2 
i 

| �1 , �2 ) to obtain the output-oriented analog of 

M i = 

[
γ (Z 2 

i 
| �2 ) 

γ (Z 1 
i 
| �1 ) 

]
︸ ︷︷ ︸ 
:= E 2 (Z 1 i ,Z 2 i | �1 , �2 ) 

×
[
γ (Z 2 

i 
| C(�2 )) /γ (Z 2 

i 
| �2 ) 

γ (Z 1 
i 
| C(�1 )) /γ (Z 1 

i 
| �1 ) 

]1 / 2 

︸ ︷︷ ︸ 
:= S 1 (Z 1 i ,Z 2 i | �1 , �2 ) 

× T 1 (Z 1 i , Z 2 i | �1 , �2 ) . (2.10)

Here, E 2 (Z 1 i , Z 
2 
i 

| �1 , �2 ) gives a measure of technical efficiency

change under either variable or constant returns to scale since ef-

ficiency is measured in terms of �1 and �2 as opposed to the

conical hulls of �1 and �2 as in E 1 (Z 1 i , Z 
2 
i 

| �1 , �2 ) in (2.9) . The

term S 1 (Z 1 i , Z 
2 
i 

| �1 , �2 ) provides a measure of any change in the

scale efficiency of firm i . The ratio in the denominator of S 1 mea-

sures the distance between the projection of (Z 1 
i 
) onto �1 ∂ and

the projection of (Z 1 
i 
) onto C ∂ (�1 ) , providing a measure of the

scale efficiency of firm i in period 1. 3 The ratio in the numerator of

S 1 (Z 1 i , Z 
2 
i 

| �1 , �2 ) provides the corresponding measure in period

2. It is easy to see that both the numerator and the denominator of

S 1 must be less than 1, and that S 1 > (= , < ) 1 iff scale efficiency

for firm i increases (remains unchanged, decreases) from period 1

to period 2. 

Both decompositions in (2.9) and (2.10) use the term T 1 to mea-

sure change in technology, but this term is based on the conical

hulls of �1 and �2 . Under variable returns to scale, it is possi-

ble for the conical hulls to remain unchanged while the technol-

ogy shifts upward or downward in regions where the technology

� t ∂ is not coincident with C ∂ (�t ) . This problem is addressed by

Ray and Desli (1997) who propose the output-oriented analog of

the decomposition 

M i = E 2 (Z 1 i , Z 2 i | �1 , �2 ) ×
[

γ (Z 2 
i 
| �1 ) 

γ (Z 2 
i 
| �2 ) 

× γ (Z 1 
i 
| �1 ) 

γ (Z 1 
i 
| �2 ) 

]1 / 2 

︸ ︷︷ ︸ 
:= T 2 (Z 1 i ,Z 2 i | �1 , �2 ) 

= 

[
γ (Z 2 

i 
| C(�1 )) /γ (Z 2 

i 
| �1 ) 

γ (Z 1 
i 
| C(�2 )) /γ (Z 1 

i 
| �2 ) 

× γ (Z 2 
i 
| C(�2 )) /γ (Z 2 

i 
| �2 ) 

γ (Z 1 
i 
| C(�1 )) /γ (Z 1 

i 
| �1 ) 

]1 / 2 

︸ ︷︷ ︸ 
:= S 2 (Z 1 i ,Z 2 i | �1 , �2 ) 

(2.11)

The term T 2 (Z 1 i , Z 
2 
i 

| �1 , �2 ) provides a measure of the change in

technology between periods 1 and 2 regardless of whether returns
3 Note that firm i would be scale-efficient in period 1 if γ (Z 1 
i 

| C(�1 )) = γ (Z 1 
i 

| 
�1 ) . Otherwise, the firm is scale-inefficient. See Wheelock and Wilson (1999) for 

discussion. 

“  

i

o scale are constant or variable. This term consists of a geometric

ean of two ratios. The first ratio gives a measure of any shift in

he technology �∂ relative to firm i ’s position in period 2. Simi-

arly, the second ratio gives a measure of any shift in the technol-

gy relative to firm i ’s position in period 1. Either of these ratios

s greater than (equal to, less than) 1 iff the technology shifts out-

ard (remains unchanged, shifts inward). 

Ray and Desli (1997) remark (p. 1036) that S 2 (Z 1 i , Z 
2 
i 

| �1 , �2 )

is a geometric mean of the ratios of scale efficiencies of the two

undles using in turn the VRS technologies from the two periods

s the benchmark. In that sense, it is more in the spirit of a Fisher

ndex.” Färe et al. ( 1997 , p. 1042) criticize the measure S 2 , and in
articular note that the term “may incorrectly identify the scale

roperties of the underlying technology.” while providing an illus-

rative example in their footnote 7. 

Indeed, the term S 2 (Z 1 i , Z 
2 
i 

| �1 , �2 ) defined by (2.11) can be

ritten as 

 2 (Z 
1 
i , Z 

2 
i | �1 , �2 ) 

= 

[
γ (Z 2 

i 
| C(�1 )) /γ (Z 2 

i 
| �1 ) 

γ (Z 1 
i 
| C(�2 )) /γ (Z 1 

i 
| �2 ) 

× S 1 (Z 1 i , Z 2 i | �1 , �2 ) 

]1 / 2 

. 

(2.12)

he meaning of S 1 (Z 1 i , Z 
2 
i 

| �1 , �2 ) is clear and intuitive, but the

rst ratio inside the parentheses in (2.12) is less so. The numer-

tor of this ratio measures scale efficiency in period 1, but from

he viewpoint of the firm’s location in period 2. Similarly, the de-

ominator measures scale efficiency in period 2, but relative to

he firm’s location in period 1. Lovell ( 2003 , p. 442) describes

 2 (Z 
1 
i 
, Z 2 

i 
| �1 , �2 ) and notes that “the qualifier ‘change’ refers to

he quantity vectors but not to the technologies.”

Gilbert and Wilson (1998) , Simar and Wilson (1998) and

heelock and Wilson (1999) use the output-oriented analog of 

 i = E 2 (Z 1 i , Z 2 i | �1 , �2 ) × T 2 (Z 1 i , Z 2 i | �1 , �2 ) 

× S 1 (Z 1 i , Z 2 i | �1 , �2 ) 

×
[

γ (Z 1 
i 
| C(�1 )) /γ (Z 1 

i 
| �1 ) 

γ (Z 1 
i 
| C(�2 )) /γ (Z 1 

i 
| �2 ) 

× γ (Z 2 
i 
| C(�1 )) /γ (Z 2 

i 
| �1 ) 

γ (Z 2 
i 
| C(�2 )) /γ (Z 2 

i 
| �2 ) 

]1 / 2 

︸ ︷︷ ︸ 
:= S 3 (Z 1 i ,Z 2 i | �1 , �2 ) 

(2.13)

fter decomposing S 2 (Z 1 i , Z 
2 
i 

| �1 , �2 ) in (2.11) into S 1 (Z 1 i , Z 
2 
i 

|
1 , �2 ) and S 3 (Z 1 i , Z 

2 
i 

| �1 , �2 ) . This measure consists of a ge-

metric mean of two ratios, each resembling the ratio that de-

nes S 1 (Z 1 i , Z 
2 
i 

| �1 , �2 ) in (2.10) , but with some important dif-

erences. Note that S 1 (Z 1 i , Z 
2 
i 

| �1 , �2 ) measures the change in

cale efficiency of the firm. This could improve if the firm moves

loser to the most efficient scale size in period 2, or it could im-

rove if the firm does not move between periods 1 and 2, but the

echnology changes so that �2 ∂ is closer to C ∂ (�2 ) than �1 ∂ is

o C ∂ (�1 ) . But now consider the first ratio in the definition of

 3 (Z 
1 
i 
, Z 2 

i 
| �1 , �2 ) in (2.13) . Here, the firm’s position is fixed at

ts location in period 1; the ratio can differ from 1 iff the distance

etween the projection of (Z 1 
i 
) onto �1 ∂ and C ∂ (�1 ) is different

rom the projection of (Z 1 
i 
) onto �2 ∂ and C ∂ (�2 ) along the hy-

erbolic path through (Z 1 
i 
) . The second ratio in S 3 (Z 1 i , Z 

2 
i 

| �1 , �2 )

rovides a similar measure relative to the firm’s position in pe-

iod 2, and S 3 (Z 1 i , Z 
2 
i 

| �1 , �2 ) is the geometric mean of these two

easures. 4 Gilbert and Wilson (1998) , Simar and Wilson (1998) and

heelock and Wilson (1999) label their corresponding measures

�ScaleTech,” and both Simar and Wilson (1998) and Wheelock
4 Balk ( 2001 , p. 173) remarks that the decomposition in (2.13) is confusing, but 

ts meaning seems clear. 
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nd Wilson (1999) refer to the term as a measure of “the scale

f the technology” as opposed to the change in the scale efficiency

f a firm as measured by S 1 . See Simar and Wilson (1998) and

heelock and Wilson (1999) for further discussion and illustra-

ions. 5 

All of the quantities and model features defined so far are un-

bservable, and hence must be estimated. In addition, inference

s needed in order to know what might be learned from data.

ome additional assumptions are needed to complete the statis-

ical model. The following assumptions are analogous to Assump-

ions 3.1–3.4 of Kneip et al. (2015) . In order to draw upon previ-

us results, we state the assumptions below in terms of the input-

riented measure of efficiency. The assumptions can also be stated

n terms of the output, hyperbolic and directional measures of effi-

iency, and the results of Kneip et al. (2015) extend to those mea-

ures after trivial (but tedious) changes in notation in Kneip et al.

2015) . 

ssumption 2.4. (i) The random variables ( X , Y ) possess a joint

ensity f t with support D 
t ⊂ �t ; and (ii) f t is continuously dif-

erentiable on D 
t . 

ssumption 2.5. (i) D 
t∗ := { θ (x, y | �t ) x, y ) | (x, y ) ∈ D 

t } ⊂ D 
t ;

ii) D 
t∗ is compact; and (iii) f t ( θ ( x , y ) x , y ) > 0 for all (x, y ) ∈ D 

t . 

The next two assumptions are needed when DEA estimators

re used. Assumption 2.6 imposes some smoothness on the fron-

ier. Kneip, Simar, and Wilson (2008) require only two-times differ-

ntiability to establish the existence of a limiting distribution for

RS-DEA estimators, but the stronger assumption that follows is

eeded to establish results on moments of the DEA estimators. 

ssumption 2.6. θ ( x , y | � t ) is three times continuously differen-

iable on D 
t . 

Recalling that the strong (i.e., free) disposability assumed in

ssumption 2.3 implies that the frontier is weakly monotone, the

ext assumption strengthens this by requiring the frontier to be

trictly monotone with no constant segments. This is also needed

o establish properties of moments of the DEA estimators. 

ssumption 2.7. D 
t is almost strictly convex ; i.e., for any

(x, y ) , ( ̃  x , ̃  y ) ∈ D 
t with ( x 

‖ x ‖ , y ) � = ( ˜ x ‖ ̃  x ‖ , ̃  y ) , the set { (x ∗, y ∗) |
(x ∗, y ∗) = (x, y ) + α(( ̃  x , ̃  y ) − (x, y )) for some 0 < α < 1 } is a subset
f the interior of D 

t . 

Assumptions 2.1 –2.7 comprise a statistical model similar to the

ne defined in Kneip et al. (2015) and where DEA estimators have

esirable properties. However, two additional, important assump-

ions are needed to obtain asymptotic properties of DEA estima-

ors derived by Kneip et al. (2018) of the Malmquist index defined

n (2.8) as well as of DEA estimators of the various components

f Malmquist indices presented above. These assumptions appear

s Assumptions 3.1 and 3.2 in Kneip et al. (2018) . Since these as-

umptions involve considerable technical detail and require addi-

ional notation, the assumptions are presented with some discus-

ion in Section A.1 of Appendix A . Assumption A.1 is needed to en-

ure well-defined estimators of θ (x, y | C(�t )) and γ (x, y | C(�t )) .

art (iii) of the assumption is needed to bound the logarithms

f these as well as of θ ( x , y | � t ) and γ ( x , y | � t ) away from zero.
5 Other decompositions are possible, and it is not feasible to give an exhaustive 

reatment here. See Lovell (20 03) and Zofio (20 07) for summaries and discussion. 

ote that Lovell (2003) refers to S 2 (Z 1 i , Z 2 i | �1 , �2 ) as “the activity effect” and de- 

omposes (p. 446) the term into 3 components. Estimation of each of these new 

omponents requires nesting one estimator inside another, resulting in consider- 

ble complication for statistical inference requiring new theoretical results that are 

eyond the scope of this paper. 

U  

e  

d  

(  

1  

M  

S  

K  
ssumption A.2 is required to ensure well-defined estimators of

ross-period efficiencies. 

. Hyperbolic DEA estimators and their asymptotic properties 

The VRS-DEA estimator of � t proposed by Farrell (1957) and

anker, Charnes, and Cooper (1984) is the convex hull of the free-

isposal hull of observed input-output pairs in period t . The esti-

ator is given by ̂ t 
n := 

{
(x, y ) ∈ R 

p+ q | y ≤ Y 
t ω , x ≥ X 

t ω , i ′ n ω = 1 , ω ∈ R 
n 
+ 
}
, 

(3.1) 

here X 
t = −P LX pmatrix −

(
X t 
1 
, . . . , X t n 

)
− P LX pmatrix − and Y t =

P LX pmatrix −
(
Y t 
1 
, . . . , Y t n 

)
− P LX pmatrix − are ( p ×n ) and ( q ×n )

atrices of input and output vectors in period t , respectively; i n 
s an ( n ×1) vector of ones, and ω is a ( n ×1) vector of weights.

eplacing � t in (2.4) with ̂ �t 
n yields the linear program 

(x, y | ̂ �t 
n ) = min 

θ, ω 

{
θ | y ≤ Y 

t ω , θx ≥ X 
t ω , i ′ n ω = 1 , ω ∈ R 

n 
+ 
}
. 

(3.2) 

lternatively, replacing � t in (2.5) with ̂ �t 
n yields the nonlinear

rogram 

(x, y | ̂ �t 
n ) 

= min 
γ , ω 

{
γ | γ −1 y ≤ Y 

t ω , γ x ≥ X 
t ω , i ′ n ω = 1 , ω ∈ R 

n 
+ 
}
. (3.3) 

ilson (2011) provides a simple numerical algorithm for comput-

ng γ (x, y | ̂ �t 
n ) that avoids the computational difficulty of solving

he nonlinear program directly. 

Alternatively, the conical DEA (CDEA) estimator C ( ̂  �t ) of C (�t )

s obtained by dropping the constraint i ′ n ω = 1 in (3.1) . This leads

o the CDEA estimator γ (x, y | C( ̂  �t )) of γ (x, y | C(�t )) obtained

y dropping the constraint i ′ n ω = 1 in (3.3) . 

Kneip et al. (2018) establish asymptotic properties of the CDEA

stimator γ (x, y | C( ̂  �t )) of γ (x, y | C(�t )) under appropriate as-

umptions. In particular, Kneip et al. (2018) establish consistency

nd existence of a non-degenerate limiting distribution with rate

f convergence n κ under Assumptions 2.1 –2.7 where 

:= 

2 

p + q + 1 
. (3.4) 

n addition, Kneip et al. (2018) establish properties of the first two

oments of γ (x, y | C( ̂  �t )) as well as of log γ (x, y | C( ̂  �t )) . 

Kneip et al. (2018) then consider a firm operating at observed,

xed points ( x 1 , y 1 ) and ( x 2 , y 2 ) in periods 1 and 2. From (2.8) the

almquist index for this firm is 

 = 

[ 

γ
(
x 2 , y 2 | C(�1 ) 

)
γ
(
x 1 , y 1 | C(�1 ) 

) ×
γ
(
x 2 , y 2 | C(�2 ) 

)
γ
(
x 1 , y 1 | C(�2 ) 

)] 1 / 2 

. (3.5) 

sing the data X 
1 
n 1 

:= { (X 1 
i 
, Y 1 

i 
} i =1 , ... ,n 1 

and X 
2 
n 2 

:= { (X 2 
i 
, Y 2 

i 
} i =1 , ... ,n 2 

,

 can be estimated by 

̂ 
 = 

[ 

γ
(
x 2 , y 2 | C( ̂  �1 

n 1 
) 
)

γ
(
x 1 , y 1 | C( ̂  �1 

n 1 
) 
) ×

γ
(
x 2 , y 2 | C( ̂  �2 

n 2 
) 
)

γ
(
x 1 , y 1 | C( ̂  �2 

n 2 
) 
)] 1 / 2 

. (3.6) 

nder Assumptions 2.1 –2.7, A.1 and A.2, Theorem 3.3 of Kneip

t al. (2018) establishes the existence of a non-degenerate limiting

istribution as well as the convergence rate for the estimator in

3.6) of the Malmquist index for a given firm observed in periods

 and 2. These results permit inference about the unobserved, true

almquist index M using the subsampling methods described by

imar and Wilson (2011) . In addition, Theorems 4.2 and 4.3 of

neip et al. (2018) provide CLTs for making inference about μM :=
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E( log M i ) where the expectation is over ( X 1 , Y 1 , X 2 , Y 2 ). In ad-

dition, Theorems 4.5 and 4.6 of Kneip et al. (2018) provide CLTs

permitting inference about exp (μM ) estimated by the geometric

mean 

̂ M n := 

n ∏ 

i =1 

[ 

γ
(
X 2 
i 
, Y 2 

i 
| C( ̂  �1 

n 1 
) 
)

γ
(
X 1 
i 
, Y 1 

i 
| C( ̂  �1 

n 1 
) 
) ×

γ
(
X 2 
i 
, Y 2 

i 
| C( ̂  �2 

n 2 
) 
)

γ
(
X 1 
i 
, Y 1 

i 
| C( ̂  �2 

n 2 
) 
)] 1 / 2 

. (3.7)

Wilson (2011) establishes consistency of the hyperbolic es-

timator in (3.3) of γ ( x , y | � t ) under Assumptions weaker than

Assumptions 2.1 –2.7 listed above, and proves that the rate of con-

vergence is n κ . However, some additional results are needed in or-

der to make inference about the Malmquist index components de-

fined by the various decompositions discussed above in Section 2 .

Proofs are given in Appendix A . 

The first result establishes the existence of non-degenerate lim-

iting distributions for the hyperbolic efficiency estimator and its

logarithm. 

Theorem 3.1. Let 
( ·) denote either (i) the identity function or (ii)
the log function. Under Assumptions 2.1 –2.7 and A.1 part (iii), 

n κ
(

(γ (x, y | ̂ �t 

n )) − 
(γ (x, y | �t )) 
) L −→ Q 



γ (3.8)

as n → ∞ , where Q 


γ is a non-degenerate distribution with finite vari-

ance. 

The next result establishes properties of the first two moments

of the hyperbolic efficiency estimator under VRS, analogous to

Kneip et al. ( 2015, Theorem 3.1 ). 

Theorem 3.2. Let 
( ·) denote either (i) the identity function or
(ii) the log function. Let ν1 = 3 / (p + q + 1) , ν2 = (p + q + 4) / (p +
q + 1) and ν3 = (p + q + 2) / (p + q + 1) . Under Assumptions 2.1 –2.7

and A.1 part (iii), ∃ a constant C 

1 

∈ (0 , ∞ ) such that for all i, j ∈
{ 1 , . . . , n } , 
E(
(γ (X t i , Y 

t 
i | ̂ �t 

n )) − 
(γ (X t i , Y 
t 
i | �t ))) 

= C 
1 n 
−κ + O 

(
n −ν1 ( log n ) ν2 

)
, (3.9)

VAR 
(

(γ (X t i , Y 

t 
i | ̂ �t 

n )) − 
(γ (X t i , Y 
t 
i | �t )) 

)
= O 

(
n −ν1 ( log n ) ν1 

)
(3.10)

and ∣∣∣COV 

(

(γ (X t i , Y 

t 
i | ̂ �t 

n )) − 
(γ (X t i , Y 
t 
i | �t )) , 
(γ (X t j , Y 

t 
j | ̂ �t 

n )) 

− 
(γ (X t j , Y 
t 
j | �t )) 

)∣∣∣
= O (n −ν3 ( log n ) ν3 ) = o(n −1 ) . (3.11)

The value of the constant C 
1 depends on the density f , 
( ·) and on
the structure of the set D 

t ⊂ �t . 

The next result provides properties of moments of the log-

hyperbolic estimator in dynamic, two-period settings. 

Theorem 3.3. Let Let ν1 , ν2 and ν3 be defined as in Theorem 3.2 .

Under Assumptions 2.1 –2.7 , A.1 part (iii) and A.2 , for all t , s ∈ {1, 2} ∃ a
constant C ts 

2 
∈ (0 , ∞ ) such that for all i, j ∈ { 1 , . . . , n } , 

E 
(
log γ (X t i , Y 

t 
i | ̂ �s 

n ) − log γ (X t i , Y 
t 
i | �s ) 

)
= C ts 2 n 

−κ + O 

(
n −ν1 ( log n ) ν2 

)
, (3.12)

VAR 
(
log γ (X t i , Y 

t 
i | ̂ �s 

n ) − log γ (X t i , Y 
t 
i | �s ) 

)
= O 

(
n −ν1 ( log n ) ν1 

)
(3.13)
 n  
nd for t ∗, s ∗ ∈ {1, 2}, j � = i , 

E 

([
log γ (X t i , Y 

t 
i | ̂ �s 

n ) − E( log γ (X t i , Y 
t 
i | �s )) 

]
log γ (X s 

∗
j , Y 

s ∗
j | ̂ �t ∗

n ) − E( log γ (X s 
∗
j , Y 

s ∗
j | �t ∗ )) 

])∣∣∣
= O 

(
n −ν3 ( log n ) ν3 

)
= o 

(
n −1 

)
(3.14)

s n ≤min { n 1 , n 2 } → ∞ . The value of the constant C ts 
2 

depends on the

ensity f and on the structure of the sets D 
s ⊂ �s and D 

t ⊂ �t . 

. Inference about Malmquist index components 

.1. Inference about change in technology 

This section focuses on the technology change measure

 2 (Z 
1 
i 
, Z 2 

i 
| �1 , �2 ) defined in (2.11) and appearing in (2.13) . The

easure T 1 (Z 1 i , Z 
2 
i 

| �1 , �2 ) defined in (2.9) is seldom used in the

iterature, but nonetheless is considered in Section 4.2 as are the

ther components of productivity change defined in (2.9), (2.10),

2.11) and (2.13) . 

As discussed above, the sample X n = { Z 1 
i 
, Z 2 

i 
} n 
i =1 

contains the

et of input-output pairs from periods 1 and 2 for firms ob-

erved in both periods. However, there may be n 1 > n firms ob-

erved in period 1, and n 2 > n firms observed in period 2 so that

 ≤min ( n 1 , n 2 ). The n 1 observations in X 
1 
n 1 

= { Z 1 
i 
} n 1 
i =1 

can be used

o construct an estimate ̂ �1 
n 1 

of �1 , while the n 2 observations

n X 
2 
n 2 

= { Z 2 
i 
} n 2 
i =1 

can be used to construct an estimate ̂ �2 
n 2 

of
2 . For a firm observed at z 1 = (x 1 , y 1 ) ∈ �1 in period 1 and at

 
2 = (x 2 , y 2 ) ∈ �2 in period 2, T 2 (z 1 , z 2 | �1 , �2 ) is estimated by

 2 (z 
1 , z 2 | ̂ �1 

n 1 
, ̂  �2 

n 2 
) . 

heorem 4.1. Under Assumptions 2.1 –2.7 , A.1 part (iii) and A.2 , for

ach z 1 ∈ D 
1 and z 2 ∈ D 

2 , as n 1 , n 2 → ∞ 

 
κ
(
T 2 (z 1 , z 2 | ̂ �1 

n 1 
, ̂  �2 

n 2 
) − T 2 (z 1 , z 2 | �1 , �2 ) 

) L −→ Q T 2 ,z 1 ,z 2 (4.1)

here Q T 2 ,z 1 ,z 2 is a non-degenerate distribution with finite variance. 

Theorem 4.1 establishes the existence of a limiting distribution

s well as consistency and rate of convergence n κ for the estima-

or T 2 (z 1 , z 2 | ̂ �1 
n 1 

, ̂  �2 
n 2 

) . These results are sufficient to enable valid

nference about T 2 (z 1 , z 2 | �1 , �2 ) for a single firm using the sub-

ampling methods described by Simar and Wilson (2011) . 

Given the sample X n , one may obtain n estimates T 2 (Z 1 i , Z 
2 
i 

|̂ 1 
n 1 

, ̂  �2 
n 2 

) . Define 

T 2 : = E 
(
log T 2 (Z 1 i , Z 2 i | �1 , �2 ) 

)
= E( log γ (Z 2 i | �1 ) − log γ (Z 2 i | �2 ) + log γ (Z 1 i | �1 ) 

− log γ (Z 1 i | �2 )) , (4.2)

here expectations are with respect to Z 1 
i 
and Z 2 

i 
. Then consider

he sample mean 

̂ T 2 ,n := n −1 
n ∑ 

i =1 

log T 2 (Z 1 i , Z 2 i | ̂ �1 
n 1 

, ̂  �2 
n 2 

) . (4.3)

To simplify notation, let σ 2 
T 2 = VAR ( log T 2 (Z 1 i , Z 

2 
i 

| �1 , �2 )) < ∞
here expectations are over ( Z 1 , Z 2 ). The next result provides a CLT

or μT 2 . 

heorem 4.2. Under Assumptions 2.1 –2.7 , A.1 part (iii) and A.2 , ∃ a
onstant D T 2 such that 

 
1 / 2 
(̂ μT 2 ,n − μT 2 − D T 2 n 

−κ − ξn,κ

) d −→ N 

(
0 , σ 2 

T 2 

)
(4.4)
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here ξn,κ = O ( n −ν1 ( log n ) ν1 ) = o ( n −κ ) and ν1 is defined in

heorem 3.2 . In addition, 

̂ 
2 
T 2 ,n = n −1 

n ∑ 

i =1 

(
log T 2 (Z 1 i , Z 2 i | ̂ �1 

n 1 
, ̂  �2 

n 2 
) − ̂ μT 2 ,n 

)2 p −→ σ 2 
T 2 . (4.5) 

Although ̂ μT 2 ,n is a consistent estimator of μT 2 , the estimator

as bias D T 2 n 
−κ . If κ > 1/2, then the bias as well as the remain-

er term ξ n , κ are dominated by the n 1/2 scaling factor and hence

an be ignored. Consequently, whenever κ > 1/2, a (1 − α) × 100 -

ercent confidence interval for ̂ μT 2 ,n is estimated by 

̂ μT 2 ,n ± z 1 − α
2 

̂ σT 2 ,n √ 

n 

]
, (4.6) 

here z 1 − α
2 

is the corresponding (1 − α
2 ) quantile of the standard

ormal distribution function. Under the conditions of Theorem 4.2 ,

his interval has asymptotically correct coverage provided κ > 1/2

i.e., p + q ≤ 2 ). 

By contrast, if κ = 1 / 2 , the bias in (4.4) is constant. If κ < 1/2,

he bias tends to infinity as n → ∞ . In cases where κ ≤1/2, re-

lacing the scaling factor n 1/2 with n ζ where ζ ∈ (0, κ) would

rive the bias to 0 as n → ∞ , but would also drive the variance

o 0, resulting in a degenerate limiting distribution and prevent-

ng inference from begin made. The usefulness of Theorem 4.2 for

ractical applications is quite limited since κ > 1/2 if and only if

(p + q ) ≤ 2 . Fortunately, an approach similar to the one of Kneip

t al. (2015) can be used to solve this problem. 

Let n κ = min (� n 2 κ� , n ) , where � a � denotes the largest integer
ess than or equal to a . Then for κ < 1/2, n κ < n . Assume that the

bservations in X n are randomly sorted (the algorithm described

y Daraio, Simar, and Wilson (2018) , Appendix D can be used to

andomly sort the observations while allowing results to be repli-

ated by other researchers using the same data and the same sort-

ng algorithm). Define 

̂ T 2 ,n κ := n −1 
κ

n κ∑ 

i =1 

log 
(
T 2 (Z 1 i , Z 2 i | ̂ �1 

n 1 
, ̂  �2 

n 2 
) 
)
. (4.7) 

ote that the estimates T 2 (Z 1 i , Z 
2 
i 

| ̂ �1 
n 1 

, ̂  �2 
n 2 

) are computed using

ll of the available observations, but that the summation is over

nly the first n κ observations in X n . The next result establishes the

roperties of this estimator. 

heorem 4.3. Under Assumptions 2.1 –2.7 , A.1 part (iii) and A.2 , for

ases where κ ≤1/2, 

 
κ
(̂ μT 2 ,n κ − μT 2 − D T 2 n 

−κ − ξn,κ

) d −→ N 

(
0 , σ 2 

T 2 

)
(4.8) 

s n → ∞ , where ξn,κ = O ( n −ν1 ( log n ) ν1 ) = o ( n −κ ) and ν1 is defined

n Theorem 3.2 . 

The bias term D T 2 n 
−κ remains in (4.8) , but the both the bias

nd the variance remain constant as n → ∞ . Consequently, the bias

erm can be replaced with a generalized jackknife estimate ̂ B T 2 ,n,κ

imilar to the bias estimate developed in Kneip et al. (2015) . The

ias estimate presented in Kneip et al. (2015) assumes n 1 = n 2 = n,

hile the presentation below explicitly allows n 1 ≥n or n 2 ≥n . 

Recall that n firms are observed in both periods 1 and 2; these

bservations comprise the sample X n = { (Z 1 
i 
, Z 2 

i 
) } . In addition, as

iscussed above, there are n ∗
1 

= n 1 − n ≥ 0 firms observed in pe-

iod 1 but not in period 2; let these observations comprise the set

 
1 
n ∗
1 

= { W 
1 
i 
} n ∗1 
i =1 

⊂ X 
1 
n 1 
. Similarly, there are n ∗

2 
= n 2 − n ≥ 0 firms ob-

erved in period 2 but not in period 1; let W 
2 
n ∗
2 

= { W 
2 
i 
} n ∗2 
i =1 

⊂ X 
2 
n 2 

enote the set of such observations. Of course, either W 
1 
n ∗
1 
or W 

2 
n ∗
2 

ill be the empty set if n 1 = n or n 2 = n . Now split X n randomly

nto two sub-samples X 
(1) 
m 

and X 
(2) 
m 

of sizes m 1 = � n/ 2 � and m 2 =
1 2 
 − � n/ 2 � (respectively). Note that if n is even, m 1 = m 2 , but if

 is odd then m 1 = m 2 − 1 . Asymptotically, this makes no differ-

nce since m 1 / m 2 → 1 as n → ∞ . In addition, split W 
1 
n ∗
1 
randomly

nto two sub-samples W 
1(1) 
m 11 

and W 
1(2) 
m 12 

of sizes m 11 = � n ∗
1 
/ 2 � and

 12 = n ∗
1 

− � n ∗
1 
/ 2 � (respectively). If n ∗

1 
is even, m 11 = m 12 , but if

 
∗
1 
is odd then m 11 = m 12 − 1 , but this also makes no difference

symptotically. Similarly, split W 
2 
n ∗
2 
randomly into two sub-samples

 
2(2) 
m 21 

and W 
2(2) 
m 22 

of sizes m 21 = � n ∗
2 
/ 2 � and m 22 = n ∗

1 
− � n ∗

2 
/ 2 � (re-

pectively). If n ∗
2 
is even, m 21 = m 22 , but if n ∗

2 
is odd then m 21 =

 22 − 1 , but again this also makes no difference asymptotically. 

Now let X 

t( j) 
m j 

denote the set of observations on Z t 
i 

for pe-

iod t ∈ {1, 2} and subsample j ∈ {1, 2}. Let m 
∗
t j 

= m j + m t j . Define

 

t( j) 
m 

∗
t j 

:= X 
(t) 
m j 

∪ W 

t( j) 
m t j 

. Let ̂ �t( j) 
m 

∗
t j 

denote the estimator of � t , analo-

ous to (3.1) , but obtained using the observations in V t( j) 
m 

∗
t j 

instead

f X 
t 
n 1 
. Let γ (x, y | ̂ �t( j) 

m 
∗
t j 

) denote the corresponding estimator of

( x , y | �) obtained by substituting ̂ �t( j) 
m 

∗
t j 

for � in (2.5) . 

Now define ̂ 
( j) 
T 2 ,m j 

:= m 
−1 
j 

∑ 

i | (Z 1 
i 
,Z 2 

i 
) ∈X ( j) m j 

log ̂  T 2 (W 
1 
i , W 

2 
i | ̂ �1( j) 

m 
∗
1 j 

, ̂  �2( j) 
m 

∗
2 j 

) (4.9) 

or j ∈ {1, 2} and set 

̂ 
∗
T 2 ,n/ 2 = 

1 

2 

(̂ μ(1) 
T 2 ,m 1 

+ ̂  μ(2) 
T 2 ,m 2 

)
. (4.10) 

sing reasoning similar to that in Kneip et al. ( 2015 , Section 4), it

s easy to show that 

 
 T 2 ,n,κ = ( 2 κ − 1 ) 

−1 
(̂ μ∗

T 2 ,n/ 2 − ̂ μM ,n 

)
= D T 2 n 

−κ + ξ ∗
n,κ + o p 

(
n −1 / 2 

)
, 

(4.11) 

rovides an estimator of the bias D T 2 n 
−κ . The remainder term ξ ∗

n,κ

n (4.11) is of the same order as ξ n , κ appearing in (4.4) . 

Note that there are 
(

n 
n/ 2 

)
possible splits of the original n ob-

ervations. To reduce the variance of the bias estimate in (4.11) ,

he sample can be split K << 

(
n 

n/ 2 

)
times while randomly shuffling

he observations before each split, and computing ˜ B T 2 ,n,κ,k using

4.11) for k = 1 , . . . , K. Then 

 
 T 2 ,n,κ = K −1 

K ∑ 

k =1 ̃

 B T 2 ,n,κ,k (4.12) 

ives a generalized jackknife estimate of the bias D T 2 n 
−κ ( Gray

 Schucany, 1972 , Definition 2.1). Averaging in (4.12) reduces the

ariance by a factor of K −1 relative to the bias in (4.11) . 

Substituting the bias estimate in (4.12) for the bias terms D T 2 in
heorems 4.2 and 4.3 leads to the following CLT result. 

heorem 4.4. Under the conditions of Theorem 4.2 , as n → ∞ 

 
1 / 2 
(̂ μT 2 ,n − ̂ B T 2 ,n,κ − μT 2 − ξn,κ

) d −→ N 

(
0 , σ 2 

T 2 

)
(4.13) 

henever κ ≥2/5 . In addition, for cases where κ < 1/2, 

 
κ
(̂ μT 2 ,n κ − ̂ B T 2 ,n,κ − μT 2 − ξn,κ

) d −→ N 

(
0 , σ 2 

T 2 

)
(4.14) 

s n → ∞ . 

Note that in all cases (i.e., for all values of κ), ξn,κ = o(n −κ )

nd hence n κξn,κ = o(1) . Therefore the remainder term can be ne-

lected. 

In cases where κ ≥2/5 and hence (p + q ) ≤ 4 , Theorem 4.4 to-

ether with (4.5) from Theorem 4.2 ensures that the interval 

̂ μT 2 ,n − ̂ B T 2 ,n,κ ± z 1 − α
2 

̂ σT 2 ,n √ 

n 

]
, (4.15) 
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s  
where as in (4.6) z 1 − α
2 
represents the 

(
1 − α

2 

)
quantile of the stan-

dard normal distribution function provides an asymptotically cor-

rect (1 − α) confidence interval for μT 2 . For cases where κ < 1/2

and hence (p + q ) ≥ 4 , Theorem 4.4 permits construction of the

asymptotically correct (1 − α) confidence interval [ ̂ μT 2 ,n κ − ̂ B T 2 ,n,κ ± z 1 − α
2 

̂ σT 2 ,n 
n κ

] 
(4.16)

for μT 2 . 

The interval in (4.16) is centered on ̂ μT 2 ,n κ − ̂ B T 2 ,n,κ , and ̂ μT 2 ,n κ
is computed from a random subset of n κ estimates T 2 (Z 1 i , Z 

2 
i 

|̂ �1 
n 1 

, ̂  �2 
n 2 

) . As discussed by Kneip et al. (2015) , while this may seem

arbitrary, any confidence interval for μT 2 is arbitrary since any
asymmetric confidence interval for μT 2 can be constructed simply

by using different quantiles of the N (0, 1) distribution to establish

the bounds. The goal is always to achieve a high level of coverage

without making the confidence interval too wide to be informative.

Alternatively, in cases where κ < 1/2, the randomness of the in-

terval in (4.16) due to centering on a mean over a subsample of

size n κ < n can be eliminated by replacing ̂ μT 2 ,n κ with ̂ μT 2 ,n to ob-
tain [ ̂ μT 2 ,n − ̂ B T 2 ,n,κ ± z 1 − α

2 

̂ σT 2 ,n 
n κ

] 
. (4.17)

Both intervals (4.16) and (4.17) have the same length and hence

are equally informative. However, the interval in (4.17) should have

higher coverage in finite samples because the estimator ̂ μT 2 ,n uses
more information than the estimator ̂ μT 2 ,n κ . Hence for κ < 1/2,

n κ < n and hence the interval in (4.17) contains the true value

μT 2 with probability greater than (1 − α) . Due to the results given

above, it is clear that the coverage of the interval in (4.17) con-

verges to 1 as n → ∞ . 

Note that when (p + q ) = 4 , either result (4.13) or (4.14) can

be used to construct intervals with asymptotically correct coverage.

For reasons given by Kneip et al. ( 2015 , Section 4.1), one should

expect the interval in (4.16) to provide a better approximation in

finite samples than (4.15) when (p + q ) = 4 . 

As with estimates of the Malmquist index defined in (2.8) , re-

searchers typically report geometric means 

̂ T 2 ,n = exp ( ̂  μT 2 ,n ) = 

( 

n ∏ 

i =1 ̂

 T 2 (Z 1 i , Z 2 i | ̂ �1 
n 1 

, ̂  �2 
n 2 

) 

) 1 /n 

. (4.18)

Clearly, ̂ T 2 ,n can be seen as an estimator of T 2 = exp (μT 2 ) . The
properties of this estimator are given the next result. 

Theorem 4.5. Under Assumptions 2.1 –2.7 , A.1 part (iii) and A.2 , as

n ≤min { n 1 , n 2 } → ∞ 

n 1 / 2 
( ̂ T 2 ,n − exp (μT 2 ) + exp (μT 2 ) D T 2 n 

−κ + ξT 2 ,n,κ

)
d −→ N 

(
0 , exp (2 μT 2 ) σ

2 
T 2 

)
(4.19)

where ξT 2 ,n,κ = O ( n −ν1 ( log n ) ν1 ) = o ( n −κ ) and ν1 is defined in

Theorem 3.2 . 

Provided κ > 1/2, both the bias and the remainder terms in

(4.19) are asymptotically negligible, and [ ̂ T 2 ,n ± z 1 − α
2 

exp ( ̂  μT 2 ,n ) ̂  σT 2 ,n 
n 1 / 2 

] 
(4.20)

provides a (1 − α) × 100 -percent confidence interval for exp (μT 2 )
with asymptotically correct coverage. But if κ ≤1/2, the bias must

be dealt with. 

Suppose κ ≤1/2. Assume the observations in X n are randomly

ordered and define 

̂ T 2 ,n κ = exp ( ̂  μT 2 ,n κ ) = 

( 

n κ∏ 

i =1 ̂

 T 2 (Z 1 i , Z 2 i | ̂ �1 
n 1 

, ̂  �2 
n 2 

) 

) 1 /n κ

. (4.21)
ote that the estimates under the product sign are computed us-

ng all of the available data, but the product is over only the first

 κ observations in X n . The properties of the estimator ̂ T 2 ,n κ are

stablished in the next theorem. 

heorem 4.6. Under Assumptions 2.1 –2.7 , A.1 part (iii) and A.2 , for

ases where κ ≤1/2, 

 
κ
( ̂ T 2 ,n κ − exp (μT 2 ) + exp (μT 2 ) D T 2 n 

−κ + ξT 2 ,n,κ

)
d −→ N 

(
0 , exp (2 μT 2 ) σ

2 
T 2 

)
(4.22)

s n → ∞ . 

As in Theorem 4.3 , the bias is stabilized in Theorem 4.6 , but

t does not disappear as n → ∞ and therefore must be estimated.

 generalized jackknife estimate ̂ B T 2 ,n,κ analogous to the estimatê 
 T 2 ,n,κ discussed above can be obtained by following the steps to

ompute ̂ B T 2 ,n,κ but replacing the sample arithmetic means with

heir corresponding sample geometric means. This leads to the fol-

owing result. 

heorem 4.7. Under the conditions of Theorem 4.2 , 

 
1 / 2 
( ̂ T 2 ,n − ̂ B T 2 ,n,κ − exp (μT 2 ) + ξT 2 ,n,κ

) d −→ N 

(
0 , exp (2 μT 2 ) σ

2 
T 2 

)
(4.23)

s n → ∞ whenever κ ≥2/5 . In addition, for cases where κ < 1/2, 

 
κ
( ̂ T 2 ,n κ − ̂ B T 2 ,n,κ − exp (μT 2 ) − ξT 2 ,n,κ

) d −→ N 

(
0 , exp (2 μT 2 ) σ

2 
T 2 

)
(4.24)

s n → ∞ . 

For cases where κ ≥2/5, Theorem 4.7 permits construction of

n asymptotically correct (1 − α) confidence interval for exp (μT 2 )
iven by 
 ̂ T 2 ,n − ̂ B T 2 ,n,κ ± z 1 − α

2 

exp ( ̂  μT 2 ,n ) ̂  σT 2 ,n 
n 1 / 2 

] 
. (4.25)

lternatively, whenever κ < 1/2, Theorem 4.7 can be used to con-

truct the asymptotically correct (1 − α) confidence interval 
 ̂ T 2 ,n κ − ̂ B T 2 ,n,κ ± z 1 − α

2 

exp ( ̂  μT 2 ,n ) ̂  σT 2 ,n 
n κ

] 
. (4.26)

nalogous to the discussion above, one could also replace ̂ T 2 ,n κ

ith ̂ T n in (4.26) , with the coverage of the resulting interval con-

erging to 1 as n → ∞ . 

Also as discussed above, one can use either of the intervals in

4.25) and (4.26) when (p + q ) = 4 . The interval in (4.25) uses the

caling factor 
√ 

n and hence neglects the term 

√ 

n ηn,κ = O (n −1 / 10 )

n result (4.23) of Theorem 4.7 , while the interval in (4.26) uses the

caling factor n κ and hence neglects the term n κηn,κ = O (n −1 / 5 ) in

esult (4.24) of Theorem 4.7 . Therefore one should expect (4.26) to

rovide a better approximation in finite samples than (4.25) when

(p + q ) = 4 . For testing purposes, however, one cannot escape the

radeoff between size and power. 

The null hypothesis of no technology change corresponds to

xp (μT 2 ) = 1 , while the alternative hypothesis of change in tech-

ology between periods 1 and 2 corresponds to exp (μT 2 ) � = 1 .

ence the null is rejected whenever the relevant estimated confi-

ence interval in (4.25) or (4.26) does not include unity. The results

f such tests are expected to be similar to the results of similar

ests based on log values, but small differences may arise due to

he different asymptotic approximations involved. Asymptotically,

ny differences are negligible. 

.2. Inference about other components of productivity change 

From an applications perspective, the most important re-

ults in Section 4.1 are Theorems 4.1, 4.4 and 4.7 . The results
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a �  
n Theorems 4.2 and 4.3 are intermediate results needed to

stablish Theorem 4.1 and make clear the role of estimation

ias. Theorems 4.5 and 4.6 similarly lead to Theorem 4.7 . Just

s T 2 (Z 1 i , Z 
2 
i 

| �1 , �2 ) is estimated by T 2 (Z 1 i , Z 
2 
i 

| ̂ �1 
n 1 

, ̂  �2 
n 2 

)

n Section 4.1 , each of the components E 1 (Z 1 i , Z 
2 
i 

| �1 , �2 ) ,

 2 (Z 
1 
i 
, Z 2 

i 
| �1 , �2 ) , T 1 (Z 1 i , Z 

2 
i 

| �1 , �2 ) , S 1 (Z 1 i , Z 
2 
i 

| �1 , �2 ) ,

 2 (Z 
1 
i 
, Z 2 

i 
| �1 , �2 ) and S 3 (Z 1 i , Z 

2 
i 

| �1 , �2 ) defined in (2.9), (2.10),

2.11) and (2.13) can be estimated by replacing �1 and �2 in the

efinitions of the measures by the estimators ̂ �1 
n 1 

and ̂ �2 
n 2 
. 

A careful reading of the proofs of Theorems 4.4 –4.7 in

ppendix A reveals that arguments similar to those used to ob-

ain the results for change in technology in Section 4.1 can be

sed to establish analogous results for an estimator of the change-

n-efficiency measure E 2 (Z 1 i , Z 
2 
i 

| �1 , �2 ) , which like the estimator

f T 2 (Z 1 i , Z 
2 
i 

| �1 , �2 ) involves a ratio of measures γ (Z s 
i 
| �t ) . The

ther components of productivity change listed above involve ra-

ios of both γ (Z s 
i 
| �t ) and γ (Z s 

i 
| C(�t )) , s , t ∈ {1, 2}. Arguments

imilar to those used in the proofs of the results in Section 4.1 ,

ombined with results from Kneip et al. (2018) on the CDEA es-

imator of distances to boundaries of conical hulls C(�t ) , can

e used to derive results for estimators of E 1 (Z 1 i , Z 
2 
i 

| �1 , �2 ) ,

 1 (Z 
1 
i 
, Z 2 

i 
| �1 , �2 ) , S 1 (Z 1 i , Z 

2 
i 

| �1 , �2 ) , S 2 (Z 1 i , Z 
2 
i 

| �1 , �2 ) and

 3 (Z 
1 
i 
, Z 2 

i 
| �1 , �2 ) analogous to those obtained in Section 4.1 for

he estimator of T 2 (Z 1 i , Z 
2 
i 

| �1 , �2 ) . Consequently, to avoid repeti-

ion, the results in this section are stated without formal proofs. 

To simplify notation, let � be a place-holder denoting either E 1 ,
 2 , T 1 , S 1 , S 2 or S 3 or some other index defined in terms of ra-

ios of the measures γ (Z s 
i 
, Z t 

i 
| �s , �t ) or γ (Z s 

i 
, Z t 

i 
| C(�s ) , C(�t )) ,

 , t ∈ {1, 2}. The results that follow hold when � is replaced with

ny of the components listed above. The next result is immediate. 

heorem 4.8. Under Assumptions 2.1 –2.7 , A.1 and A.2 , for each z 1 ∈
 
1 and z 2 ∈ D 

2 , as n 1 , n 2 → ∞ 

 
κ
(
�(z 1 , z 2 | ̂ �1 

n 1 
, ̂  �2 

n 2 
) − �(z 1 , z 2 | �1 , �2 ) 

) L −→ Q �,z 1 ,z 2 (4.27) 

here Q �,z 1 ,z 2 is a non-degenerate distribution with finite variance. 

emark 4.1. Note that in the theorems of Section 4.1 , parts (i)–(ii)

f Assumption A.1 are not needed since the measure T 2 (Z 1 i , Z 
2 
i 

|
1 , �2 ) does not involve the conical hull of either �1 or �2 .

imilarly, E 2 (Z 1 i , Z 
2 
i 

| �1 , �2 ) also does not involve the conical

ull of either �1 or �2 . Hence when E 2 replaces � in (4.27) ,

heorem 4.8 does not require parts (i)–(ii) of Assumption A.1 .

ut for the other measures listed above, all three parts of

ssumption A.1 are needed. The same remark applies to the re-

aining theorems that follow in this section. 

Theorem 4.8 establishes the existence of limiting distributions

s well as consistency and rate of convergence n κ for the esti-

ators of the components E 1 (Z 1 i , Z 
2 
i 

| �1 , �2 ) , E 2 (Z 1 i , Z 
2 
i 

| �1 , �2 ) ,

 1 (Z 
1 
i 
, Z 2 

i 
| �1 , �2 ) , S 1 (Z 1 i , Z 

2 
i 

| �1 , �2 ) , S 2 (Z 1 i , Z 
2 
i 

| �1 , �2 ) and

 3 (Z 
1 
i 
, Z 2 

i 
| �1 , �2 ) of productivity change. These results are suf-

cient to enable valid inference about each component for a single

rm using the subsampling methods described by Simar and Wil-

on (2011) . 

Analogous to (4.2) , define 

� := E 
(
log �(Z 1 i , Z 

2 
i | �1 , �2 ) 

)
(4.28) 

nd consider the sample mean 

̂ �,n := n −1 
n ∑ 

i =1 

log �(Z 1 i , Z 
2 
i | ̂ �1 

n 1 
, ̂  �2 

n 2 
) . (4.29) 

imilar to (4.7) , define 

̂ �,n κ := n −1 
κ

n κ∑ 

i =1 

log �(Z 1 i , Z 
2 
i | ̂ �1 

n 1 
, ̂  �2 

n 2 
) , (4.30) 
oting that the estimates log �(Z 1 
i 
, Z 2 

i 
| ̂ �1 

n 1 
, ̂  �2 

n 2 
) are computed

sing all of the available observations, but that the summation

s over only the first n κ observations in X n where again n κ =
in (� n 2 κ� , n ) . Finally, let ̂ B �,n,κ denote the generalized jackknife

stimate of bias D �n −κ analogous to ̂ B T 2 ,n,κ in (4.12) obtained by

eplacing T 2 with � in (4.9) –(4.12) . The next result enables infer-

nce about μ�. 

heorem 4.9. Under the conditions of Theorem 4.2 , as n → ∞ 

 
1 / 2 
(̂ μ�,n − ̂ B �,n,κ − μ� − ξ�,n,κ

) d −→ N 

(
0 , σ 2 

�

)
(4.31) 

henever κ ≥2/5 . Alternatively, for cases where κ < 1/2, 

 
κ
(̂ μ�,n κ − ̂ B �,n,κ − μ� − ξ�,n,κ

) d −→ N 

(
0 , σ 2 

�

)
(4.32) 

s n → ∞ . In addition, 

̂ 
2 
�,n = n −1 

n ∑ 

i =1 

(
log �(Z 1 i , Z 

2 
i | ̂ �1 

n 1 
, ̂  �2 

n 2 
) − ̂ μ�,n 

)2 p −→ σ 2 
�. (4.33) 

In all cases (i.e., for all values of κ), ξ�,n,κ = o(n −κ ) and hence

 
κξ�,n,κ = o(1) . Therefore the remainder term can be neglected.

heorem 4.9 ensures that the interval 

̂ μ�,n − ̂ B �,n,κ ± z 1 − α
2 

̂ σ�,n √ 

n 

]
(4.34) 

rovides a confidence interval for μ� with asymptotically correct

overage of (1 − α) in cases where κ ≥2/5. Alternatively, when

< 1/2, Theorem 4.9 ensures that the interval 
 ̂ μ�,n κ − ̂ B �,n,κ ± z 1 − α

2 

̂ σ�,n 

n κ

] 
(4.35) 

as asymptotic coverage of (1 − α) . 

In order to consider geometric means of the various compo-

ents of productivity change while avoiding repetitive notation, let

 1 , E 2 , T 1 , T 2 , S 1 , S 2 or S 3 denote geometric means of estima-

ors of E 1 , E 2 , T 1 , T 2 , S 1 , S 2 or S 3 , respectively. In other words,

rite 

̂ 
n = exp ( ̂  μ�,n ) = 

( 

n ∏ 

i =1 ̂

 �(Z 1 i , Z 
2 
i | ̂ �1 

n 1 
, ̂  �2 

n 2 
) 

) 1 /n 

(4.36) 

nd replace � with one of {E 1 , E 2 , T 1 , T 2 , S 1 , S 2 , S 3 } while

eplacing ϒ with the corresponding element of the set

 E 1 , E 2 , T 1 , T 2 , S 1 , S 2 , S 3 } (for example, replacing � and

in (4.36) with T 2 and T 2 , respectively, yields the expression

n (4.18) ). Then let ̂ B ϒ,n,κ denote a generalized jackknife estimate

f bias analogous to ̂ B T 2 ,n,κ obtained by replacing T 2 with ϒ in

4.9) –(4.12) . Similar to (4.18) , ̂ ϒn can be viewed as an estimator

f ϒ = exp (μ�) . The results in the remainder of this sections are

tated in terms of � and ϒ , with the understanding that these

re place-holders as described above. The next result permits

nference about ϒ = exp (μ�) . 

heorem 4.10. Under the conditions of Theorem 4.2 , as n → ∞ 

 
1 / 2 
(̂ ϒn − ̂ B ϒ,n,κ − exp (μ�) + ξϒ,n,κ

) d −→ N 

(
0 , exp (2 μ�) σ 2 

�

)
(4.37) 

s n → ∞ whenever κ ≥2/5 . In addition, for cases where κ < 1/2, 

 
κ
(̂ ϒn κ − ̂ B ϒ,n,κ − exp (μ�) − ξϒ,n,κ

) d −→ N 

(
0 , exp (2 μ�) σ 2 

�

)
(4.38) 

s n → ∞ , where ξϒ,n,κ = O ( n −ν1 ( log n ) ν1 ) = o ( n −κ ) and ν1 is de-

ned in Theorem 3.2 . 

For cases where κ ≥2/5, Theorem 4.10 permits construction of

n asymptotically correct (1 − α) confidence interval for exp ( μ )
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Table 1 

Productivity Change and Its Components for Swedish Pharmacies, 1980–1989 ( p = q = 4 ). 

Period ̂ M n 
̂ E 1 ,n 

̂ E 2 ,n 
̂ T 1 ,n 

̂ T 2 ,n 
̂ S 1 ,n 

̂ S 2 ,n 
̂ S 3 ,n 

1980–1981 0.99553 1.01093 1.00411 0.98476 ∗∗∗ 0.99945 1.00339 ∗∗∗ 0.97980 ∗∗ 0.96640 

1981–1982 1.03636 0.96712 ∗∗∗ 0.97440 ∗∗∗ 1.07159 ∗∗∗ 1.07646 ∗∗∗ 0.99626 ∗∗∗ 0.98252 0.97683 

1982–1983 1.01220 1.02702 ∗∗∗ 1.02041 ∗∗∗ 0.98557 ∗∗∗ 0.98172 ∗∗ 1.00324 ∗∗ 0.99727 0.96616 

1983–1984 0.97079 0.99373 0.99808 0.97692 ∗∗ 0.97535 0.99782 0.99065 ∗∗∗ 0.97401 ∗∗∗

1984–1985 1.02153 ∗ 1.00194 1.00112 ∗ 1.01955 ∗∗∗ 1.01712 ∗∗ 1.0 0 041 0.99224 ∗∗ 0.97827 

1985–1986 1.00942 ∗ 0.99339 0.99289 1.01614 ∗∗∗ 1.01308 ∗∗∗ 1.0 0 025 0.99335 ∗∗∗ 0.97811 

1986–1987 1.03270 1.0 0 074 ∗∗∗ 1.00522 ∗∗∗ 1.03194 1.02593 0.99777 0.99173 ∗∗∗ 0.97971 

1987–1988 1.02152 ∗∗∗ 1.00663 ∗∗∗ 1.00455 ∗∗∗ 1.01479 1.00935 1.00103 ∗ 0.99331 ∗∗ 0.97124 ∗∗

1988–1989 1.02532 ∗∗∗ 1.00278 ∗∗ 0.99984 ∗∗ 1.02248 ∗∗∗ 1.02876 ∗∗∗ 1.00147 0.98484 0.97381 

1980–1989 1.09186 ∗∗ 1.00326 ∗∗∗ 1.0 0 0 03 ∗∗∗ 1.08832 ∗∗ 1.10708 ∗∗∗ 1.00161 ∗∗ 0.97410 ∗∗∗ 0.93949 

Note: Significant differences from 1 at levels .1, .05 or. 01 are indicated by one, two or three asterisks, respectively. 
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given by [ ̂ ϒn − ̂ B ϒ,n,κ ± z 1 − α
2 

exp ( ̂  μ�,n ) ̂  σ�,n 

n 1 / 2 

] 
. (4.39)

Alternatively, whenever κ < 1/2, Theorem 4.10 can be used to con-

struct the asymptotically correct (1 − α) confidence interval [ ̂ ϒn κ − ̂ B ϒ,n,κ ± z 1 − α
2 

exp ( ̂  μ�,n ) ̂  σ�,n 

n κ

] 
. (4.40)

Analogous to the discussion above, one could also replace ̂ ϒn κ witĥ ϒn in (4.40) , with the coverage of the resulting interval converging

to 1 as n → ∞ . 

5. An empirical illustration 

Färe et al. (1992) examine productivity change among n = 42

Swedish pharmacies over 1980–1989. Their model specifies p =
4 inputs and q = 4 outputs. 6 As noted in Section 2 , Färe et al.

(1992) estimate a Malmquist index based on input-oriented dis-

tance measures, and decompose their index analogously to the

decomposition in (2.9) . For each pair of years 1980–1981, 1981–

1982, . . . , 1 988–1 989 Färe et al. (1992) report geometric means of

their estimated Malmquist indices as well as for their estimates

of input-oriented analogues of the components E 1 (Z 1 i , Z 
2 
i 

| �1 , �2 )

and T 1 (Z 1 i , Z 
2 
i 

| �1 , �2 ) defined in (2.9) . 

Table 1 shows geometric means of estimated hyperbolic

Malmquist indices as well as of the various components de-

fined in (2.9), (2.10), (2.11) and (2.13) obtained using the Färe

et al. (1992) data on Swedish pharmacies. Since Färe et al.

(1992) work in the input orientation, the geometric means re-

ported in columns labeled ̂ E 1 ,n , ̂ T 1 ,n and ̂ M n in Table 1 are equal

to square roots of the corresponding geometric means reported by

Färe et al. (1992) in their Tables 1–3. One, two or three asterisks

in Table 1 indicate statistical significance of differences from 1 at

levels .1, .05 and .01 (respectively). In discussing their results, Färe

et al. ( 1992 , p. 96) remark that “According to our results, we have

had on average productivity gains in seven periods and productiv-

ity losses in two periods.” In Table 1 , geometric means of estimated

Malmquist indices for year-to-year periods range from 0.9708 to

1.0364, but are significantly different (at the.05 level) from 1 only

for 1984–1985 and 1985–1986 (at.1) and 1987–1988 and 1988–

1989 (at.01). However, looking at 1980–1989, there is evidence of

considerable (about 9 percent, significant at.05) change in produc-

tivity. 

In the periods where geometric means of estimated Malmquist

indices are not significantly different from 1, some of the com-

ponents of productivity change are significantly different from 1
6 The inputs are (i) labor input for pharmacists; (ii) labor input for technical staff; 

(iii) building services; and (iv) equipment services. The outputs are (i) drug deliver- 

ies to hospitals; (ii) prescription drugs for outpatient care; (iii) medical appliances 

for the handicapped; and (iv) over the counter goods. See Färe et al. (1992) for fur- 

ther details. We are grateful to the authors for making the data available. 

o  

9  

o  

e  

d

lthough they work to offset each other resulting in no signifi-

ant change in productivity. For example, the geometric mean of

stimated Malmquist indices among the year-to-year periods is

argest—1.03636—for 1981–1982. Both of the geometric means for

fficiency change estimates are significant and less than 1, while

oth of the geometric means for change in technology are signifi-

ant and greater than 1. Combined, these results suggest that while

he technology shifted upward between 1981 and 1982, the phar-

acies did not become more productive, and consequently became

ess technically efficient. In other words, the technology shifted,

ut the pharmacies did not. Instead, they were left behind. The

alue of 0.99626 for ̂ S 1 ,n during 1981–1982 indicates a significant

ecrease in scale efficiency, but the value is perhaps not economi-

ally significant since it is numerically close to 1. 

For 1980–1989, the estimated value ̂ E 2 ,n for (geometric) mean

fficiency change is numerically very close to 1, but significantly

ifferent from 1 at the.01 level. This is due in part to the fact that

he estimated variance ̂  σE 2 ,n is rather small (0.00198). Although the

stimate is significantly different from 1, it is perhaps not econom-

cally meaningful. By contrast, the value of the technology-change

stimate ̂ T 2 ,n is equal to 1.10708, and significant at the.01 level. To-

ether, these two estimates imply that the technology shifted up-

ard between 1980 and 1989, and the pharmacies also shifted up-

ard, keeping pace with the technology. The product of the scale

stimates ̂ S 1 ,n and ̂ S 2 ,n is less than 1 (the estimate ̂ S 3 ,n is also

ess than 1). Thus while the results in Table 1 suggest that tech-

ology improved by about 10.7 percent, and efficiency was largely

nchanged, the scale effects offset a small part of the improvement

n technology resulting in an increase in average productivity of

bout 9.2 percent. 

It is important to note that much more is known about the sta-

istical properties of DEA estimators today than was known when

äre et al. (1992) published their paper. Today, we know the con-

ergence rate of the VRS-DEA estimator and its conical hull (un-

er VRS) is n 2 / (p+ q +1) . Moreover, with only n = 42 observations in

ach year and p + q = 8 dimensions, the well-known curse of di-

ensionality is problematic. The “effective parametric sample size”

efined by Wilson (2018) is only 5. Moreover, the hyperbolic free-

isposal hull efficiency estimator yields 40–42 observations with

fficiency estimates equal to 1 in each year, providing another indi-

ation that the number of dimensions is too large for the available

umber of observations to obtain meaningful estimates. 

Performing an eigensystem decomposition of the moment ma-

rix X ′ X of the 4 inputs as discussed by Wilson (2018) indicates

he ratio of the largest eigenvalue to the sum of the eigenvalues

s 95.4. The similar ratio for the 4 outputs is 91.3, and for the 3

utputs excluding deliveries to hospitals the corresponding ratio is

6.5. With only 42 observations in each year, the simulation results

f Wilson (2018) strongly suggest that mean-square error of the

stimates will be reduced using the dimension-reduction method

escribed by Daraio and Simar (2007) and Wilson (2018) . 
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Table 2 

Productivity Change and Its Components for Swedish Pharmacies, 1980–1989 ( p = 1 , q = 2 ). 

Period ̂ M n 
̂ E 1 ,n 

̂ E 2 ,n 
̂ T 1 ,n 

̂ T 2 ,n 
̂ S 1 ,n 

̂ S 2 ,n 
̂ S 3 ,n 

1980–1981 1.04115 ∗∗∗ 0.95615 ∗∗∗ 0.96654 ∗∗∗ 1.08889 ∗∗∗ 1.07917 ∗∗∗ 0.99461 0.97483 ∗ 0.96916 ∗∗

1981–1982 1.03009 ∗∗ 0.84746 ∗∗∗ 0.91362 ∗∗∗ 1.21550 ∗∗∗ 1.13658 ∗∗∗ 0.96311 ∗∗∗ 0.95838 ∗∗∗ 0.96331 

1982–1983 1.01365 1.17883 ∗∗∗ 1.08312 ∗∗∗ 0.85988 ∗∗∗ 0.93245 ∗∗∗ 1.04325 ∗∗∗ 0.89944 ∗∗∗ 0.89269 ∗∗∗

1983–1984 0.98084 ∗ 0.94881 ∗∗∗ 1.0 0 099 ∗ 1.03376 ∗∗∗ 0.98498 0.97359 ∗∗∗ 0.97029 ∗∗∗ 0.97443 ∗∗∗

1984–1985 1.02794 ∗∗∗ 1.06846 ∗∗∗ 1.03847 ∗∗∗ 0.96208 ∗∗∗ 0.98618 ∗∗∗ 1.01434 ∗∗∗ 0.92795 ∗∗∗ 0.92367 ∗∗∗

1985–1986 1.01819 ∗∗∗ 0.97724 ∗∗∗ 0.98190 ∗∗∗ 1.04190 ∗∗∗ 1.03259 ∗∗∗ 0.99763 0.95523 ∗∗∗ 0.94924 ∗∗∗

1986–1987 1.04266 ∗∗∗ 1.01199 ∗∗ 1.02699 ∗∗∗ 1.03031 ∗∗∗ 1.01493 ∗∗∗ 0.99267 ∗∗∗ 0.94699 ∗∗∗ 0.94580 ∗∗∗

1987–1988 1.04217 ∗∗∗ 0.98086 ∗∗∗ 0.99191 ∗∗∗ 1.06250 ∗∗∗ 1.04111 ∗∗∗ 0.99441 ∗∗∗ 0.94142 ∗∗∗ 0.93119 ∗∗∗

1988–1989 1.03364 ∗∗∗ 1.05425 ∗∗∗ 1.01015 ∗∗∗ 0.98044 ∗∗∗ 1.03202 ∗∗∗ 1.02160 ∗∗∗ 0.91462 ∗∗∗ 0.91926 ∗∗∗

1980–1989 1.24841 ∗∗∗ 0.99030 1.00457 1.26064 ∗∗∗ 1.25113 ∗∗∗ 0.99287 ∗∗∗ 0.97006 ∗∗∗ 0.96290 

Note: Significant differences from 1 at levels .1, .05 or .01 are indicated by one, two or three asterisks, respectively. 

Table 3 

Tests for Differences Between “Small” and “Large” Pharmacies, 1980–1989 ( p = 1 , q = 2 ). 

Period ̂ M n 
̂ E 1 ,n 

̂ E 2 ,n 
̂ T 1 ,n 

̂ T 2 ,n 
̂ S 1 ,n 

̂ S 2 ,n 
̂ S 3 ,n 

1980–1981 −2.330 ∗∗ 5.118 ∗∗∗ 7.260 ∗∗∗ −20.902 ∗∗∗ −8.109 ∗∗∗ −2.690 ∗∗∗ 1.150 1.055 

1981–1982 −2.140 ∗∗ 15.485 ∗∗∗ 14.521 ∗∗∗ −18.404 ∗∗∗ −15.095 ∗∗∗ 2.064 ∗∗ −0.040 −1.399 

1982–1983 −0.872 10.758 ∗∗∗ 11.472 ∗∗∗ −19.794 ∗∗∗ −14.631 ∗∗∗ 0.788 −2.978 ∗∗∗ −3.033 ∗∗∗

1983–1984 −3.868 ∗∗∗ 10.131 ∗∗∗ 10.820 ∗∗∗ −50.138 ∗∗∗ −16.404 ∗∗∗ −2.267 ∗∗ 8.202 ∗∗∗ 1.309 

1984–1985 −0.341 −5.104 ∗∗∗ −1.329 11.833 ∗∗∗ 0.135 −5.804 ∗∗∗ 10.177 ∗∗∗ 10.340 ∗∗∗

1985–1986 −2.330 ∗∗ 9.300 ∗∗∗ 9.199 ∗∗∗ −16.606 ∗∗∗ −19.068 ∗∗∗ −6.044 ∗∗∗ 8.891 ∗∗∗ 10.258 ∗∗∗

1986–1987 −1.874 ∗ −4.168 ∗∗∗ 12.903 ∗∗∗ 7.457 ∗∗∗ −16.214 ∗∗∗ −18.736 ∗∗∗ 9.561 ∗∗∗ 11.004 ∗∗∗

1987–1988 −0.367 5.506 ∗∗∗ 8.139 ∗∗∗ −8.917 ∗∗∗ −16.266 ∗∗∗ −6.563 ∗∗∗ 8.767 ∗∗∗ 8.908 ∗∗∗

1988–1989 0.393 −9.836 ∗∗∗ −3.398 ∗∗∗ 31.042 ∗∗∗ 0.321 −2.841 ∗∗∗ 6.211 ∗∗∗ 6.623 ∗∗∗

1980–1989 −3.340 ∗∗∗ 3.258 ∗∗∗ 0.557 −8.948 ∗∗∗ −5.250 ∗∗∗ 3.402 ∗∗∗ 4.561 ∗∗∗ −5.463 ∗∗∗

Note: Significant differences from 0 at levels .1, .05 or .01 are indicated by one, two or three asterisks, respectively. 
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Table 2 show results analogous to those in Table 1 but obtained

orking in the reduced space with only the first principle com-

onent of the 4 inputs (based on the moment matrix of the in-

uts) and the first output (i.e., hospital deliveries) and the first

rinciple component of the remaining 3 outputs so that p = 1 and

 = 2 . Comparing the results in Table 2 with those in Table 1 , it

s evident that more estimates are significantly different from 1

hen dimensionality is reduced than when working in the full-

imensional space. This is due to the fact that dimension reduction

llows more precise (i.e., reduced mean-square error) estimates.

oreover, the results for productivity change and for technology

hange over 1980–1989 are considerably larger when dimension

eduction is used. This again is to be expected, since with dimen-

ion reduction fewer individual distance estimates are equal to 1

han in the full-dimensional space. The overall conclusions drawn

y Färe et al. (1992) , i.e., that productivity change among the phar-

acies is driven mainly by technology change, remain valid in

iew of the results in Table 2 . In fact, the results are stronger and

ore dramatic than those originally reported by Färe et al. (1992) .

It is straightforward to extend the results obtained above in

ection 4 can be used to make test of differences between groups

f producers, similar to the test for differences in mean effi-

iency developed by Kneip et al. ( 2016 , Section 3.1.1). Suppose

here are two independent groups (labeled “a ” and “b ”, with

 a and n b observations in each of two time periods with n a +
 b = n . For j ∈ { a , b } let n j,κ = min (� n 2 κa � , n j ) . Let ̂ T 2 ,n j 

and ̂ T 2 ,n j,κ

nd denote the geometric means for technical change defined in

4.18) and (4.21) for group j ∈ { a , b }. Similarly, let ̂ B T 2 ,n j ,κ
denote

he generalized jackknife estimate of bias for group j ∈ { a , b }. Let

T 2 , j 
be the expectation corresponding to (4.2) for group j ∈ { a , b }.

heorem 4.7 can be used to establish the following result. 

heorem 5.1. Under the conditions of Theorem 4.2 , ( ̂ T 2 ,n a − ̂ T 2 ,n b 

)
−
(̂ B T 2 ,n a ,κ − ̂ B T 2 ,n b ,κ

)
−
(
exp (μT 2 ,a ) − exp (μT 2 ,b ) 

)(
exp (2 ̂  μT 2 ,n a 

) ̂  σT 2 ,n a 

n a 
+ 

exp (2 ̂  μT 2 ,n b 
) ̂  σT 2 ,n b 

n b 

)1 / 2 

d −→ N(0 , 1) (5.41) 
c  
s n → ∞ whenever κ ≥2/5 . In addition, for cases where κ < 1/2, ( ̂ T 2 ,n a,κ − ̂ T 2 ,n b,κ

)
−
(̂ B T 2 ,n a ,κ − ̂ B T 2 ,n b ,κ

)(
exp (μT 2 ,a ) − exp (μT 2 ,b ) 

)(
exp (2 ̂  μT 2 ,n a,κ

) ̂  σT 2 ,n a 

n a,κ
+ 

exp (2 ̂  μT 2 ,n b,κ
) ̂  σT 2 ,n b 

n b,κ

)1 / 2 

d −→ N(0 , 1) (5.42) 

s n → ∞ . 

Under the null hypothesis that technical change is the same in

oth groups, ( exp (μT 2 ,a 
) − exp (μT 2 ,b 

)) = 0 , and Theorem 5.1 can

e used to test this hypothesis. Using similar reasoning, the results

n Theorem 4.10 can be used to establish results for the other com-

onents of productivity change analogous to those in Theorem 5.1 .

n addition, Theorems 4.5 and 4.6 of Kneip et al. (2018) can be

sed to construct similar results for the Malmquist index itself. 

Working in the reduced space with the pharmacy data, we have

p + q = 3 and hence κ = 1 / 2 . For each pair of years a and b , we

ort the pharmacies according to the value of the single input in

ear a , and then compare productivity change and its components

or the smallest 21 pharmacies versus the largest 21 pharmacies.

able 3 gives results of these tests. 

Among the 80 test statistics reported in Table 3 , all but 13 are

ignificantly different from 0. All of the significant statistics for

roductivity change are negative, indicating that the larger phar-

acies had greater productivity improvement (or smaller decrease

n 1983–1984) than the smaller pharmacies. The results for techni-

al change are similar, indicating that the larger pharmacies drove

nnovation more than the smaller pharmacies. On the other hand,

tatistics for the efficiency change measures as well as the scale

easures are positive and significant in many cases, suggesting

hat the smaller pharmacies became relatively more efficiency than

heir larger counterparts in many cases. 

. Summary and conclusions 

Indices arising from various decompositions of Malmquist

ndices are widely used to measure changes in technology effi-

iency, technology, scale efficiency and other factors and are often
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estimated by nonparametric DEA estimators. Until now, no theo-

retical results justifying inference about the sources of productivity

change measured by these indices have been available, nor have

theoretical results permitting valid inference using geometric

means of these indices been available. These deficiencies are

remedied by the present paper. Results enabling inference via the

subsampling methods of Simar and Wilson (2011) for individual

producers are provided. In addition, new CLT results are estab-

lished to enable inference about overall or average changes in

terms of geometric means. Moreover, as shown in Section 5 , it

is easy to use these new CLT results to test hypotheses regard-

ing differences in changes in efficiency, changes in technology,

etc. between groups of firms along the lines of Kneip et al. (2016) .

We focus in this paper on hyperbolic measures to avoid issues

of existence and numerical difficulties. Simar, Vanhems, and Wil-

son (2012) extend results on hyperbolic VRS-DEA estimators to di-

rectional VRS-DEA estimators, and the similar arguments can be

used to extend the results obtained above to directional measures

and estimates. Of course, input and output-oriented measures are

special cases of the directional measure, and so the results ob-

tained above also extend trivially to the input and output orien-

tations. Note also that Luenberger indices are simply additive ver-

sions of the multiplicative Malmquist indices. Hicks–Moorsteen in-

dices involve ratios of both input-oriented and output-oriented dis-

tance measures. 7 Consequently, the results obtained here extend

easily to make inference about these indices, too. 

Appendix A. Technical details 

A1. Additional assumptions 

The two additional assumptions that appear in this section ap-

pear as Assumptions 3.1 and 3.2 in Kneip et al. (2018) . The first

assumption is needed to ensure that estimators of θ ( x , y | � t ) and

γ ( x , y | � t ) are well-defined. The second assumption ensures that

the cross-efficiency estimators θ (Z 2 
i 

| �1 ) and θ (Z 1 
i 

| �2 ) as well

as γ (Z 2 
i 

| �1 ) and γ (Z 1 
i 

| �2 ) are well-defined. Before stating the

assumptions, some discussion is presented to establish notation

used in the first assumption. See Kneip et al. (2018) for additional

discussion. 

Note that for a point (x, y ) ∈ D 
t the input-oriented efficiency

θ (x, y | C(�t )) can be written as 8 

θ (x, y | C(�t )) 

= min 
a> 0 

{
θ (x, ay | �t ) 

a 
| (θ (x, ay | �t ) x, ay ) ∈ �t 

}
. (A.1)

In addition, let a 
x,y 
min 

∈ R + denote the smallest a > 0 such that 

θ (x, y | C(�t )) 

= 

θ (x, a x,y 
min 

y | �t ) 

a x,y 
min 

= min 
a> 0 

{
θ (x, ay | �t ) 

a 
| (θ (x, ay | �t ) x, ay ) ∈ �t 

}
. (A.2)

Necessarily, a 
x,y 
min 

∈ R + is uniquely defined if � t is strictly convex. 

Recall that due to Assumptions 2.4 –2.7 , the support of any ob-

servable data in each period t is some subset D 
t ⊂ �t . In other
7 See Färe, Grosskopf, and Margaritis (2008) for discussions of the Luenberger 

and Hicks–Moorsteen indices. 
8 For any efficiency estimator θ ( x , y | � t ) considered in this section we will use 

the following conventions: if (x, y ) �∈ �t with ( bx , y ) ∈ � t for some b > 1 we set 

θ (x, y | �t ) = bθ (bx, y | �t ) . Otherwise, θ ( x , y | � t ) := 1 (or ̂ θ (x, y | �t ) := 1 ) when- 

ver the set of all possible values satisfying the defining inequalities is the empty 

set. Asymptotically, this has negligible effect. 

e

e

ords, D 
t is the “observable part” of � t . The difference between

 
t and � t does not play an important role in Kneip et al. (2008,

015, 2016) since Assumption 2.5 requires (i) (θ (x, y | �t ) x, y ) ∈
 
t for (θ (x, y | �t ) x, y ) ∈ D 

t and (ii) f ( θ ( x , y | � t ) x , y ) > 0. Here,

owever, the difference between D 
t and � t is problematic for

ealing with θ (x, y | C(�t )) . Furthermore, in order to ensure that

almquist indices are well-defined, D 
t and D 

s must “fit together”

or different periods t , s . Therefore, some additional conceptual

ork is necessary. 

Let 

 
t 
norm 

:= 

{ (
x 

‖ x ‖ 

, 
y 

‖ y ‖ 

)
| (x, y ) ∈ D 

t 
} 
. (A.3)

f p + q = 2 then trivially D 
t 
norm 

= { (1 , 1) } . But when p + q > 2 ,

 
t 
norm 

will quantify the set of all possible “directions” of vectors

 and y where it is possible to define a frontier. Note that for any

( ̃  x , ̃  y ) with ‖ ̃  x ‖ = 1 and ‖ ̃  y ‖ = 1 and ( ̃  x , ̃  y ) / ∈ D 
t 
norm 

, we necessarily

ave { a ̃  x , b ̃  y | a, b > 0 } ∩ D 
t = ∅ . This means that “in the direction”

f ( ̃  x , ̃  y ) it is not possible to define any type of identifiable effi-

iency measure, since there is no information about an efficient

rontier in such directions. 9 

Introduction of D 
t 
norm 

is of particular importance in a dynamic

ontext where efficiencies in two different time periods t and s are

o be compared. Frontiers may change and we may have differ-

nt supports D 
t and D 

s in the two periods. However, it is neces-

ary that D 
t 
norm 

= D 
s 
norm 

. Otherwise, there will be observations in

ne period for which distance to the other-period frontier cannot

e defined. In this case Malmquist indices will be undefined with

on-zero, non-negligible probability. 

On the other hand, for any ( x 
‖ x ‖ , 

y 
‖ y ‖ ) ∈ D 

t 
norm 

there exists a

nique ray defining the corresponding part of the conical hull fron-

ier C ∂ (�t ) . This can easily be seen by letting ( x 
‖ x ‖ , 

y 
‖ y ‖ ) ∈ D 

t 
norm 

. In

ddition, for a > 0, define 

  x 

(
a 

y 

‖ y ‖ 

)
:= min 

b> 0 

{ 
b 

x 

‖ x ‖ 

| 
(
b 

x 

‖ x ‖ 

, a 
y 

‖ y ‖ 

)
∈ �t 

} 
. (A.4)

hen there exists some αx,y 
min 

> 0 such that 

˜ g x (α
x,y 
min 

y 
‖ y ‖ ) 

αx,y 
min 

= min 
a> 0 

{˜ g x (a 
y 

‖ y ‖ ) 
a 

| 
(
g x 

(
a 

y 

‖ y ‖ 

)
x 

‖ x ‖ 

, a 
y 

‖ y ‖ 

)
∈ �t 

}
(A.5)

here αx,y 
min 

∈ R + is necessarily uniquely defined if � t is strictly

onvex. 10 

Assuming that only values a leading to well-defined frontier

oints are taken into account, for any (x, y ) ∈ D 
t we now have 

in 
a> 0 

θ (x, ay ) 

a 
= min 

a> 0 

˜ g x (‖ y ‖ a y 
‖ y ‖ ) 

‖ x ‖ a 
= 

‖ y ‖ 

‖ x ‖ 

min 
a> 0 

˜ g x (‖ y ‖ a y 
‖ y ‖ ) 

‖ y ‖ a 

= 

‖ y ‖ 

‖ x ‖ ̃

 g x (α
x,y 
min 

y 
‖ y ‖ ) 

αx,y 
min 

, (A.6)

nd a 
x,y 
min 

defined in (A.2) satisfies a 
x,y 
min 

= 

αx,y 
min ‖ y ‖ . 

Obviously, all we can hope to estimate is the version of

A.5) where � t is replaced by the observable part D 
t ⊂ �t .

f αx,y 
min 

∈ R + is such that (g x (α
x,y 
min 

y 
‖ y ‖ ) 

x 
‖ x ‖ , α

x,y 
min 

y 
‖ y ‖ ) / ∈ D 

t , then it

s impossible to estimate θ (x, y | C(�t )) consistently. Minimiz-

ng (A.5) with respect to D 
t instead of � t will then lead to a
9 Under the strong disposability assumed in Assumption 2.3 , the DEA and CDEA 

stimators of θ ( x , y | � t ) and θ (x, y | C(�t )) described above are well-defined and 

can be computed, but they do not estimate anything that does not depend entirely 

upon Assumption 2.3 or that can be identified from data when (x, y ) �∈ D t norm . 
10 Note that ˜ g x (a y 

‖ y ‖ 
)

corresponds to the function g x 
(
0 , a y 

‖ y ‖ 
)

defined in Kneip 

t al. (2008) . The coordinate system introduced in Kneip et al. (2008) is not needed 

here, but is required in the proofs that follow in Appendix A . 
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boundary solution” α∗ ∈ D 
t which is “as close as possible” to

x,y 
min 

∈ R + . This can only be avoided by assuming that D 
t is large

nough such that (when minimizing (A.5) over D 
t instead of � t )

he solution a 
x,y 
min 

∈ R + is in the interior of D 
t in the sense that

(g x ((α
x,y 
min 

− δ) y 
‖ y ‖ ) 

x 
‖ x ‖ , (α

x,y 
min 

− δ) y 
‖ y ‖ ) ∈ D 

t as well as (g x ((α
x,y 
min 

+
) y 
‖ y ‖ ) 

x 
‖ x ‖ , (α

x,y 
min 

+ δ) y 
‖ y ‖ ) ∈ D 

t . Since D 
t is almost strictly con-

ex by Assumption 2.7 , αx,y 
min 

∈ R + is necessarily unique, and˜ g x ((a x,y min 
−δ) y 

‖ y ‖ ) 
(a 

x,y 
min 

−δ) 
> 

˜ g x (αx,y 
min 

y 
‖ y ‖ ) 

αx,y 
min 

as well as
˜ g x ((αx,y 

min 
+ δ) y 

‖ y ‖ ) 
(αx,y 

min 
+ δ) 

> 

˜ g x (αx,y 
min 

y 
‖ y ‖ ) 

αx,y 
min 

. 

onvexity of � t then necessarily implies that this value αx,y 
min 

∈ R + 
lso corresponds to the solution of the original minimization prob-

em with respect to � t . In this sense the following assumption en-

ures well-defined estimators of θ (x, y | C(�t )) . 

ssumption A.1. (i) The support D 
t ⊂ �t of f is such that

or any ( x 
‖ x ‖ , 

y 
‖ y ‖ ) ∈ D 

t 
norm 

we have ( ̃  g x (α
x,y 
min 

y 
‖ y ‖ ) 

x 
‖ x ‖ , α

x,y 
min 

y 
‖ y ‖ ) ∈

 
t ; (ii) there exists a δ > 0 such that for any ( x 

‖ x ‖ , 
y 

‖ y ‖ ) ∈
 
t 
norm 

we also have ( ̃  g x ([ α
x,y 
min 

− δ] y 
‖ y ‖ ) 

x 
‖ x ‖ , [ α

x,y 
min 

− δ] y 
‖ y ‖ ) ∈ D 

t and

( ̃  g x ([ α
x,y 
min 

+ δ] y 
‖ y ‖ ) 

x 
‖ x ‖ , [ α

x,y 
min 

+ δ] y 
‖ y ‖ ) ∈ D 

t ; (iii) There exists a con-

tant 0 < M < ∞ such that ‖ x ‖ ≤M for all (x, y ) ∈ D 
t . 

Now turn to the dynamic case. Suppose that for two different

ime periods t ∈ {1, 2} we have the set X n = { (Z 1 
i 
) , (Z 2 

i 
) } n 

i =1 
defined

arlier in Section 2 of independent, identically distributed (iid)

airs (of pairs) of input and output quantities for the two differ-

nt periods. In each period there may exist additional observations

hich do not possess a counterpart in the other period. More pre-

isely, there are n 1 ≥n observations in period 1 which are used to

stimate the hyperbolic distance γ 1 (x, y ) := γ (x, y | C(�1 )) , while

here are n 2 ≥n observations in period 2 which are used to esti-

ate the hyperbolic distance γ 2 (x, y ) := γ (x, y | C(�2 )) . 

ssumption A.2. (i) For t ∈ {1, 2} there are iid observations

(X t 
i 
, Y t 

i 
) , i = 1 , . . . , n t , such that Assumptions 2.1 –2.7 and A.1 are

atisfied with respect to the underlying densities f t with supports

 
t ; (ii) D 

1 
norm 

= D 
2 
norm 

; (iii) for some n ≤min { n 1 , n 2 } the observa-

ions 
(
(Z 1 

i 
) , (Z 2 

i 
) 
)
, i = 1 , . . . , n are iid and their joint distribution

ossesses a continuous density f 12 with support D 
1 × D 

2 ; (iv) for

ny i = 1 , . . . , n, (Z 1 
i 
) is independent of (X 2 

j 
, Y 2 

j 
) for all j = 1 , . . . , n 2

ith i � = j ; (v) for any i = 1 , . . . , n, (Z 2 
i 
) is independent of (X 1 

j 
, Y 1 

j 
)

or all j = 1 , . . . , n 1 with i � = j . 

Note that condition (i) of this assumption only guarantees that

ll estimators θ (x, y | ̂ �t 
n t 

)) and γ (x, y | ̂ �t 
n t 

) follow the asymptotic

istributions derived in Theorems 3.1 and 3.2 of Kneip et al. (2018) .

ondition (ii) together with Eq. (3.9) of Kneip et al. (2018) ensures

hat the cross-efficiency estimators θ (Z 2 
i 

| ̂ �1 
n 1 

) and θ (Z 1 
i 

| ̂ �2 
n 2 

)

s well as γ (Z 2 
i 

| ̂ �1 
n 1 

) and γ (Z 1 
i 

| ̂ �2 
n 2 

) are asymptotically well-

efined and possess the same rates of convergence as the con-

emporaneous efficiency estimators. Conditions (iv)–(v) permit de-

endence of a given firm’s input-output quantities across periods 1

nd 2, but require independence of the firm’s input-output quanti-

ies from those of other firms in other periods. 

2. Proof of Theorem 3.1 

For case (i) where 
( ·) denotes the identity function, the result
ollows immediately from Wilson ( 2011 , Theorems 6.3.1 and 6.3.2).

iven the result for case (i), the result for case (ii) where 
( ·) de-
otes the log function follows via the delta method given the fact

hat the log function is monotone and differentiable with non-zero

erivatives on R + . �
3. Proof of Theorem 3.2 

For case (i) where 
( ·) denotes the identity function, consider
he mapping φ from R 

p 
+ × R 

q 
+ to R 

p 
+ × R 

q 
+ such that φ : (x, y ) �→

(x, y −1 ) where y −1 is the vector whose elements are the inverses

f the corresponding elements of y . Denote ω = φ(x, y ) . Clearly, φ
s a continuous, one-to-one transformation; hence (x, y ) = φ−1 (ω) .

rom the proof of Theorem 6.3.1 in Wilson (2011) , it is clear that

n ω-space, γ ( X i , Y i | � t ) is an input-oriented efficiency measure

long the lines of (2.4) . Moreover, by Theorem 6.3.1 and Lemma

.3.1 of Wilson (2011) , γ (X i , Y i | ̂ �t 
n ) is an ordinary input-oriented

VRS) DEA estimator along the lines of (3.2) with (p + q ) “inputs”

nd no outputs. Hence the results in (3.9) –(3.11) follow from Kneip

t al. ( 2015, Theorem 3.1 ). 

For case (ii) where 
( ·) denotes the log function, by A.1 part
iii), γ ( X i , Y i | � t ) as well as the derivatives γ ′ ( X i , Y i | � t ) and γ ′′ ( X i ,
 i | � t ) are uniformly bounded for all (X i , Y i ) ∈ D 

t . Then the results

n (3.9) –(3.11) follow from arguments parallel to those used in the

roof of Theorem 3.2 of Kneip et al. (2018) . �

4. Proof of Theorem 3.3 

For t = s the results in (3.12) –(3.14) follow trivially from case

ii) of Theorem 3.2 . 

For t � = s , note that due to Assumption A.2 , D 
1 
norm 

= D 
2 
norm 

. The

esults follow from arguments parallel to those used in the proof

f Theorem 3.4 in Kneip et al. (2018) . �

5. Proof of Theorem 4.1 

By definition, taking logs yields 

log 
(
T 2 (z 1 , z 2 | �1 , �2 ) 

)
= log 

(
γ (z 2 | �1 ) 

)
− log 

(
γ (z 2 | �2 ) 

)
+ log 

(
γ (z 1 | �1 ) 

)
− log 

(
γ (z 1 | �2 ) 

)
(A.7) 

nd 

log 
(
T 2 (z 1 , z 2 | ̂ �1 

n 1 
, ̂  �2 

n 2 
) 
)

= log 
(
γ (z 2 | ̂ �1 

n 1 
) 
)

− log 
(
γ (z 2 | ̂ �2 

n 2 
) 
)

+ log 
(
γ (z 1 | ̂ �1 

n 1 
) 
)

− log 
(
γ (z 1 | ̂ �2 

n 2 
) 
)
. (A.8) 

ote that Theorem 3.1 holds for both z 1 and z 2 due to

ssumption A.2 . Then 

 
κ
(
log 

(
T 2 (z 1 , z 2 | ̂ �1 

n 1 
, ̂  �2 

n 2 
) 
)

− log 
(
T 2 (z 1 , z 2 | �1 , �2 ) 

))
L −→ Q 

log 

T 2 ,z 1 ,z 2 
(A.9) 

ollows trivially from Theorem 3.1 . The exponential function is

onotonic and differentiable with nonzero derivatives on R + .
herefore the result follows from (A.9) via the delta method. �

6. Proof of Theorem 4.2 

First, let 

 n = E ( ̂  μT 2 ,n − μT 2 ) 

= D T 2 n 
−κ − ξn,κ . (A.10) 

o simplify notation, let T 2 i = T 2 (Z 1 i , Z 
2 
i 

| �1 , �2 ) and let ̂ T 2 i =
 2 (Z 

1 
i 
, Z 2 

i 
| ̂ �1 

n 1 
, ̂  �2 

n 2 
) . Then (4.4) can be rewritten as 

 
1 / 2 ( ̂  μT 2 ,n − μT 2 − R n ) 

= 

n 1 / 2 

n 

n ∑ 

i =1 

(
log ̂  T 2 i − log T 2 i − E 

(
log ̂  T 2 i 

)
+ μT 2 

)
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S  
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n 1 / 2 

n 

n ∑ 

i =1 

( log T 2 i − μT 2 ) . (A.11)

Results (3.9) –(3.10) in Theorem 3.2 imply 

n 1 / 2 

n 

n ∑ 

i =1 

( log ̂  T 2 i − log T 2 i − E( log ̂  T 2 i ) + μT 2 ) 
p −→ 0 . (A.12)

Hence result (4.4) follows from the Lindeberg-Levy CLT. 

Second, the results in (4.5) follows directly from (A.9) in the

proof of Theorem 4.1 . In particular, ̂ σ 2 
T 2 ,n = n −1 

∑ n 
i =1 ( log ( ̂

 T 2 i ) −̂ μT 2 ,n ) 
2 p −→ E[( log ̂  T 2 i ) 2 ] − μ2 

T 2 ,n = VAR ( log T 2 i ) + [ E( log T 2 i )] 2 −
μ2 

T 2 = σ 2 
T 2 since [ E( log T 2 i )] 2 − μ2 

T 2 = 0 . �

A7. Proof of Theorem 4.3 

The result follows immediately from Theorem 4.2 since the re-

mainder term is of order o ( n −κ ) and hence n κξT 2 = n κo ( n −κ ) =
o(1) . Since ̂ μT 2 ,n in (4.4) has been replaced with ̂ μT 2 ,n κ in (4.8) ,

the scale factor needed to stabilize the variance is n κ . �

A8. Proof of Theorem 4.4 

The results follow trivially after substituting the jackknife bias

estimator into (4.4) and (4.8) . When (p + q ) = 4 then κ = 2 / 5 ,

and the remainder term in (4.4) is O (n −3 κ/ 2 ) ignoring the (log n )

term which does not affect the rate. Moreover, n 1 / 2 O (n −3 κ/ 2 ) =
O (n −1 / 10 ) , while in (4.8) n κξn,κ = O (n −1 / 5 ) . �

A9. Proof of Theorem 4.5 

The result follows using the delta method. Define 

R n = E ( ̂  μT 2 ,n − μT 2 ) = D T 2 n 
−κ + ξn,κ (A.13)

where κ is the remainder term defined in (4.4) in Theorem 4.2 . A

Taylor expansion yields 

n 1 / 2 ( exp ( ̂  μT 2 ,n ) − exp (μT 2 + R n ) ) 

= exp (μT 2 + R n ) n 
1 / 2 ( ̂  μT 2 ,n − μT 2 − R n ) + O p (n 

−1 / 2 ) . (A.14)

Since R n = O ( n −κ ) , the result follows from a further Taylor expan-

sion of exp (μT 2 + R n ) and result (4.4) in Theorem 4.2 . �

A10. Proof of Theorem 4.6 

The exponential function is monotonic and differentiable with

nonzero derivatives on R + . Therefore the result follows from

Theorem 4.3 via the delta method. �

A11. Proof of Theorem 4.7 

The results follow trivially after substituting the jackknife bias

estimator into (4.19) and (4.22) . �
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